mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-10-30 23:29:54 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			148 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			148 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| {
 | |
|  "cells": [
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "# Embaas\n",
 | |
|     "\n",
 | |
|     "[embaas](https://embaas.io) is a fully managed NLP API service that offers features like embedding generation, document text extraction, document to embeddings and more. You can choose a [variety of pre-trained models](https://embaas.io/docs/models/embeddings).\n",
 | |
|     "\n",
 | |
|     "In this tutorial, we will show you how to use the embaas Embeddings API to generate embeddings for a given text.\n",
 | |
|     "\n",
 | |
|     "### Prerequisites\n",
 | |
|     "Create your free embaas account at [https://embaas.io/register](https://embaas.io/register) and generate an [API key](https://embaas.io/dashboard/api-keys)."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "# Set API key\n",
 | |
|     "embaas_api_key = \"YOUR_API_KEY\"\n",
 | |
|     "# or set environment variable\n",
 | |
|     "os.environ[\"EMBAAS_API_KEY\"] = \"YOUR_API_KEY\""
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "from langchain.embeddings import EmbaasEmbeddings"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "embeddings = EmbaasEmbeddings()"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "metadata": {
 | |
|     "ExecuteTime": {
 | |
|      "end_time": "2023-06-10T11:17:55.940265Z",
 | |
|      "start_time": "2023-06-10T11:17:55.938517Z"
 | |
|     }
 | |
|    },
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "# Create embeddings for a single document\n",
 | |
|     "doc_text = \"This is a test document.\"\n",
 | |
|     "doc_text_embedding = embeddings.embed_query(doc_text)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "# Print created embedding\n",
 | |
|     "print(doc_text_embedding)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 9,
 | |
|    "metadata": {
 | |
|     "ExecuteTime": {
 | |
|      "end_time": "2023-06-10T11:19:25.237161Z",
 | |
|      "start_time": "2023-06-10T11:19:25.235320Z"
 | |
|     }
 | |
|    },
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "# Create embeddings for multiple documents\n",
 | |
|     "doc_texts = [\"This is a test document.\", \"This is another test document.\"]\n",
 | |
|     "doc_texts_embeddings = embeddings.embed_documents(doc_texts)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "# Print created embeddings\n",
 | |
|     "for i, doc_text_embedding in enumerate(doc_texts_embeddings):\n",
 | |
|     "    print(f\"Embedding for document {i + 1}: {doc_text_embedding}\")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 11,
 | |
|    "metadata": {
 | |
|     "ExecuteTime": {
 | |
|      "end_time": "2023-06-10T11:22:26.139769Z",
 | |
|      "start_time": "2023-06-10T11:22:26.138357Z"
 | |
|     }
 | |
|    },
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "# Using a different model and/or custom instruction\n",
 | |
|     "embeddings = EmbaasEmbeddings(\n",
 | |
|     "    model=\"instructor-large\",\n",
 | |
|     "    instruction=\"Represent the Wikipedia document for retrieval\",\n",
 | |
|     ")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "For more detailed information about the embaas Embeddings API, please refer to [the official embaas API documentation](https://embaas.io/api-reference)."
 | |
|    ]
 | |
|   }
 | |
|  ],
 | |
|  "metadata": {
 | |
|   "kernelspec": {
 | |
|    "display_name": "Python 3 (ipykernel)",
 | |
|    "language": "python",
 | |
|    "name": "python3"
 | |
|   },
 | |
|   "language_info": {
 | |
|    "codemirror_mode": {
 | |
|     "name": "ipython",
 | |
|     "version": 3
 | |
|    },
 | |
|    "file_extension": ".py",
 | |
|    "mimetype": "text/x-python",
 | |
|    "name": "python",
 | |
|    "nbconvert_exporter": "python",
 | |
|    "pygments_lexer": "ipython3",
 | |
|    "version": "3.9.1"
 | |
|   }
 | |
|  },
 | |
|  "nbformat": 4,
 | |
|  "nbformat_minor": 1
 | |
| }
 |