mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-10-31 07:41:40 +00:00 
			
		
		
		
	Embed documents without locally downloading the HF model --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
		
			
				
	
	
		
			181 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			181 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| {
 | |
|  "cells": [
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "ed47bb62",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "# Hugging Face\n",
 | |
|     "Let's load the Hugging Face Embedding class."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "16b20335-da1d-46ba-aa23-fbf3e2c6fe60",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "!pip install langchain sentence_transformers"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 2,
 | |
|    "id": "861521a9",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "from langchain.embeddings import HuggingFaceEmbeddings"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 3,
 | |
|    "id": "ff9be586",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "embeddings = HuggingFaceEmbeddings()"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 3,
 | |
|    "id": "d0a98ae9",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "text = \"This is a test document.\""
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 5,
 | |
|    "id": "5d6c682b",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "query_result = embeddings.embed_query(text)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 6,
 | |
|    "id": "b57b8ce9-ef7d-4e63-979e-aa8763d1f9a8",
 | |
|    "metadata": {},
 | |
|    "outputs": [
 | |
|     {
 | |
|      "data": {
 | |
|       "text/plain": [
 | |
|        "[-0.04895168915390968, -0.03986193612217903, -0.021562768146395683]"
 | |
|       ]
 | |
|      },
 | |
|      "execution_count": 6,
 | |
|      "metadata": {},
 | |
|      "output_type": "execute_result"
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "query_result[:3]"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 7,
 | |
|    "id": "bb5e74c0",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "doc_result = embeddings.embed_documents([text])"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "92019ef1-5d30-4985-b4e6-c0d98bdfe265",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "## Hugging Face Inference API\n",
 | |
|     "We can also access embedding models via the Hugging Face Inference API, which does not require us to install ``sentence_transformers`` and download models locally."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 1,
 | |
|    "id": "66f5c6ba-1446-43e1-b012-800d17cef300",
 | |
|    "metadata": {},
 | |
|    "outputs": [
 | |
|     {
 | |
|      "name": "stdin",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "Enter your HF Inference API Key:\n",
 | |
|       "\n",
 | |
|       " ········\n"
 | |
|      ]
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "import getpass\n",
 | |
|     "\n",
 | |
|     "inference_api_key = getpass.getpass(\"Enter your HF Inference API Key:\\n\\n\")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 4,
 | |
|    "id": "d0623c1f-cd82-4862-9bce-3655cb9b66ac",
 | |
|    "metadata": {},
 | |
|    "outputs": [
 | |
|     {
 | |
|      "data": {
 | |
|       "text/plain": [
 | |
|        "[-0.038338541984558105, 0.1234646737575531, -0.028642963618040085]"
 | |
|       ]
 | |
|      },
 | |
|      "execution_count": 4,
 | |
|      "metadata": {},
 | |
|      "output_type": "execute_result"
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "from langchain.embeddings import HuggingFaceInferenceAPIEmbeddings\n",
 | |
|     "\n",
 | |
|     "embeddings = HuggingFaceInferenceAPIEmbeddings(\n",
 | |
|     "    api_key=inference_api_key,\n",
 | |
|     "    model_name=\"sentence-transformers/all-MiniLM-l6-v2\"\n",
 | |
|     ")\n",
 | |
|     "\n",
 | |
|     "query_result = embeddings.embed_query(text)\n",
 | |
|     "query_result[:3]"
 | |
|    ]
 | |
|   }
 | |
|  ],
 | |
|  "metadata": {
 | |
|   "kernelspec": {
 | |
|    "display_name": "poetry-venv",
 | |
|    "language": "python",
 | |
|    "name": "poetry-venv"
 | |
|   },
 | |
|   "language_info": {
 | |
|    "codemirror_mode": {
 | |
|     "name": "ipython",
 | |
|     "version": 3
 | |
|    },
 | |
|    "file_extension": ".py",
 | |
|    "mimetype": "text/x-python",
 | |
|    "name": "python",
 | |
|    "nbconvert_exporter": "python",
 | |
|    "pygments_lexer": "ipython3",
 | |
|    "version": "3.9.1"
 | |
|   },
 | |
|   "vscode": {
 | |
|    "interpreter": {
 | |
|     "hash": "7377c2ccc78bc62c2683122d48c8cd1fb85a53850a1b1fc29736ed39852c9885"
 | |
|    }
 | |
|   }
 | |
|  },
 | |
|  "nbformat": 4,
 | |
|  "nbformat_minor": 5
 | |
| }
 |