mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-11-04 02:03:32 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			134 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			134 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
{
 | 
						|
 "cells": [
 | 
						|
  {
 | 
						|
   "cell_type": "markdown",
 | 
						|
   "id": "593f7553-7038-498e-96d4-8255e5ce34f0",
 | 
						|
   "metadata": {},
 | 
						|
   "source": [
 | 
						|
    "# Async API\n",
 | 
						|
    "\n",
 | 
						|
    "LangChain provides async support for Chains by leveraging the [asyncio](https://docs.python.org/3/library/asyncio.html) library.\n",
 | 
						|
    "\n",
 | 
						|
    "Async methods are currently supported in `LLMChain` (through `arun`, `apredict`, `acall`) and `LLMMathChain` (through `arun` and `acall`), `ChatVectorDBChain`, and [QA chains](/docs/use_cases/question_answering/how_to/question_answering.html). Async support for other chains is on the roadmap."
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 1,
 | 
						|
   "id": "c19c736e-ca74-4726-bb77-0a849bcc2960",
 | 
						|
   "metadata": {
 | 
						|
    "tags": []
 | 
						|
   },
 | 
						|
   "outputs": [
 | 
						|
    {
 | 
						|
     "name": "stdout",
 | 
						|
     "output_type": "stream",
 | 
						|
     "text": [
 | 
						|
      "\n",
 | 
						|
      "\n",
 | 
						|
      "BrightSmile Toothpaste Company\n",
 | 
						|
      "\n",
 | 
						|
      "\n",
 | 
						|
      "BrightSmile Toothpaste Co.\n",
 | 
						|
      "\n",
 | 
						|
      "\n",
 | 
						|
      "BrightSmile Toothpaste\n",
 | 
						|
      "\n",
 | 
						|
      "\n",
 | 
						|
      "Gleaming Smile Inc.\n",
 | 
						|
      "\n",
 | 
						|
      "\n",
 | 
						|
      "SparkleSmile Toothpaste\n",
 | 
						|
      "\u001b[1mConcurrent executed in 1.54 seconds.\u001b[0m\n",
 | 
						|
      "\n",
 | 
						|
      "\n",
 | 
						|
      "BrightSmile Toothpaste Co.\n",
 | 
						|
      "\n",
 | 
						|
      "\n",
 | 
						|
      "MintyFresh Toothpaste Co.\n",
 | 
						|
      "\n",
 | 
						|
      "\n",
 | 
						|
      "SparkleSmile Toothpaste.\n",
 | 
						|
      "\n",
 | 
						|
      "\n",
 | 
						|
      "Pearly Whites Toothpaste Co.\n",
 | 
						|
      "\n",
 | 
						|
      "\n",
 | 
						|
      "BrightSmile Toothpaste.\n",
 | 
						|
      "\u001b[1mSerial executed in 6.38 seconds.\u001b[0m\n"
 | 
						|
     ]
 | 
						|
    }
 | 
						|
   ],
 | 
						|
   "source": [
 | 
						|
    "import asyncio\n",
 | 
						|
    "import time\n",
 | 
						|
    "\n",
 | 
						|
    "from langchain.llms import OpenAI\n",
 | 
						|
    "from langchain.prompts import PromptTemplate\n",
 | 
						|
    "from langchain.chains import LLMChain\n",
 | 
						|
    "\n",
 | 
						|
    "\n",
 | 
						|
    "def generate_serially():\n",
 | 
						|
    "    llm = OpenAI(temperature=0.9)\n",
 | 
						|
    "    prompt = PromptTemplate(\n",
 | 
						|
    "        input_variables=[\"product\"],\n",
 | 
						|
    "        template=\"What is a good name for a company that makes {product}?\",\n",
 | 
						|
    "    )\n",
 | 
						|
    "    chain = LLMChain(llm=llm, prompt=prompt)\n",
 | 
						|
    "    for _ in range(5):\n",
 | 
						|
    "        resp = chain.run(product=\"toothpaste\")\n",
 | 
						|
    "        print(resp)\n",
 | 
						|
    "\n",
 | 
						|
    "\n",
 | 
						|
    "async def async_generate(chain):\n",
 | 
						|
    "    resp = await chain.arun(product=\"toothpaste\")\n",
 | 
						|
    "    print(resp)\n",
 | 
						|
    "\n",
 | 
						|
    "\n",
 | 
						|
    "async def generate_concurrently():\n",
 | 
						|
    "    llm = OpenAI(temperature=0.9)\n",
 | 
						|
    "    prompt = PromptTemplate(\n",
 | 
						|
    "        input_variables=[\"product\"],\n",
 | 
						|
    "        template=\"What is a good name for a company that makes {product}?\",\n",
 | 
						|
    "    )\n",
 | 
						|
    "    chain = LLMChain(llm=llm, prompt=prompt)\n",
 | 
						|
    "    tasks = [async_generate(chain) for _ in range(5)]\n",
 | 
						|
    "    await asyncio.gather(*tasks)\n",
 | 
						|
    "\n",
 | 
						|
    "\n",
 | 
						|
    "s = time.perf_counter()\n",
 | 
						|
    "# If running this outside of Jupyter, use asyncio.run(generate_concurrently())\n",
 | 
						|
    "await generate_concurrently()\n",
 | 
						|
    "elapsed = time.perf_counter() - s\n",
 | 
						|
    "print(\"\\033[1m\" + f\"Concurrent executed in {elapsed:0.2f} seconds.\" + \"\\033[0m\")\n",
 | 
						|
    "\n",
 | 
						|
    "s = time.perf_counter()\n",
 | 
						|
    "generate_serially()\n",
 | 
						|
    "elapsed = time.perf_counter() - s\n",
 | 
						|
    "print(\"\\033[1m\" + f\"Serial executed in {elapsed:0.2f} seconds.\" + \"\\033[0m\")"
 | 
						|
   ]
 | 
						|
  }
 | 
						|
 ],
 | 
						|
 "metadata": {
 | 
						|
  "kernelspec": {
 | 
						|
   "display_name": "Python 3 (ipykernel)",
 | 
						|
   "language": "python",
 | 
						|
   "name": "python3"
 | 
						|
  },
 | 
						|
  "language_info": {
 | 
						|
   "codemirror_mode": {
 | 
						|
    "name": "ipython",
 | 
						|
    "version": 3
 | 
						|
   },
 | 
						|
   "file_extension": ".py",
 | 
						|
   "mimetype": "text/x-python",
 | 
						|
   "name": "python",
 | 
						|
   "nbconvert_exporter": "python",
 | 
						|
   "pygments_lexer": "ipython3",
 | 
						|
   "version": "3.11.3"
 | 
						|
  }
 | 
						|
 },
 | 
						|
 "nbformat": 4,
 | 
						|
 "nbformat_minor": 5
 | 
						|
}
 |