Files
langchain/templates/extraction-openai-functions/extraction_openai_functions/chain.py
Erick Friis ebf998acb6 Templates (#12294)
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Lance Martin <lance@langchain.dev>
Co-authored-by: Jacob Lee <jacoblee93@gmail.com>
2023-10-25 18:47:42 -07:00

42 lines
1.4 KiB
Python

from langchain.pydantic_v1 import BaseModel
from typing import List, Optional
from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate
from langchain.utils.openai_functions import convert_pydantic_to_openai_function
from langchain.output_parsers.openai_functions import JsonKeyOutputFunctionsParser
import json
template = """A article will be passed to you. Extract from it all papers that are mentioned by this article.
Do not extract the name of the article itself. If no papers are mentioned that's fine - you don't need to extract any! Just return an empty list.
Do not make up or guess ANY extra information. Only extract what exactly is in the text."""
prompt = ChatPromptTemplate.from_messages([
("system", template),
("human", "{input}")
])
# Function output schema
class Paper(BaseModel):
"""Information about papers mentioned."""
title: str
author: Optional[str]
class Info(BaseModel):
"""Information to extract"""
papers: List[Paper]
# Function definition
model = ChatOpenAI()
function = [convert_pydantic_to_openai_function(Info)]
chain = prompt | model.bind(
functions=function, function_call={"name": "Info"}
) | (lambda x: json.loads(x.additional_kwargs['function_call']['arguments'])['papers'])
# chain = prompt | model.bind(
# functions=function, function_call={"name": "Info"}
# ) | JsonKeyOutputFunctionsParser(key_name="papers")