mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-04 14:48:07 +00:00
Upgrade to using a literal for specifying the extra which is the recommended approach in pydantic 2. This works correctly also in pydantic v1. ```python from pydantic.v1 import BaseModel class Foo(BaseModel, extra="forbid"): x: int Foo(x=5, y=1) ``` And ```python from pydantic.v1 import BaseModel class Foo(BaseModel): x: int class Config: extra = "forbid" Foo(x=5, y=1) ``` ## Enum -> literal using grit pattern: ``` engine marzano(0.1) language python or { `extra=Extra.allow` => `extra="allow"`, `extra=Extra.forbid` => `extra="forbid"`, `extra=Extra.ignore` => `extra="ignore"` } ``` Resorted attributes in config and removed doc-string in case we will need to deal with going back and forth between pydantic v1 and v2 during the 0.3 release. (This will reduce merge conflicts.) ## Sort attributes in Config: ``` engine marzano(0.1) language python function sort($values) js { return $values.text.split(',').sort().join("\n"); } class_definition($name, $body) as $C where { $name <: `Config`, $body <: block($statements), $values = [], $statements <: some bubble($values) assignment() as $A where { $values += $A }, $body => sort($values), } ```
272 lines
9.2 KiB
Python
272 lines
9.2 KiB
Python
import json
|
|
import logging
|
|
from typing import Any, Dict, Iterator, List, Mapping, Optional, Type
|
|
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
from langchain_core.language_models.chat_models import (
|
|
BaseChatModel,
|
|
generate_from_stream,
|
|
)
|
|
from langchain_core.messages import (
|
|
AIMessage,
|
|
AIMessageChunk,
|
|
BaseMessage,
|
|
BaseMessageChunk,
|
|
ChatMessage,
|
|
ChatMessageChunk,
|
|
HumanMessage,
|
|
HumanMessageChunk,
|
|
)
|
|
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
|
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
|
|
from langchain_core.utils import (
|
|
convert_to_secret_str,
|
|
get_from_dict_or_env,
|
|
get_pydantic_field_names,
|
|
pre_init,
|
|
)
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def _convert_message_to_dict(message: BaseMessage) -> dict:
|
|
message_dict: Dict[str, Any]
|
|
if isinstance(message, ChatMessage):
|
|
message_dict = {"Role": message.role, "Content": message.content}
|
|
elif isinstance(message, HumanMessage):
|
|
message_dict = {"Role": "user", "Content": message.content}
|
|
elif isinstance(message, AIMessage):
|
|
message_dict = {"Role": "assistant", "Content": message.content}
|
|
else:
|
|
raise TypeError(f"Got unknown type {message}")
|
|
|
|
return message_dict
|
|
|
|
|
|
def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
|
|
role = _dict["Role"]
|
|
if role == "user":
|
|
return HumanMessage(content=_dict["Content"])
|
|
elif role == "assistant":
|
|
return AIMessage(content=_dict.get("Content", "") or "")
|
|
else:
|
|
return ChatMessage(content=_dict["Content"], role=role)
|
|
|
|
|
|
def _convert_delta_to_message_chunk(
|
|
_dict: Mapping[str, Any], default_class: Type[BaseMessageChunk]
|
|
) -> BaseMessageChunk:
|
|
role = _dict.get("Role")
|
|
content = _dict.get("Content") or ""
|
|
|
|
if role == "user" or default_class == HumanMessageChunk:
|
|
return HumanMessageChunk(content=content)
|
|
elif role == "assistant" or default_class == AIMessageChunk:
|
|
return AIMessageChunk(content=content)
|
|
elif role or default_class == ChatMessageChunk:
|
|
return ChatMessageChunk(content=content, role=role) # type: ignore[arg-type]
|
|
else:
|
|
return default_class(content=content) # type: ignore[call-arg]
|
|
|
|
|
|
def _create_chat_result(response: Mapping[str, Any]) -> ChatResult:
|
|
generations = []
|
|
for choice in response["Choices"]:
|
|
message = _convert_dict_to_message(choice["Message"])
|
|
generations.append(ChatGeneration(message=message))
|
|
|
|
token_usage = response["Usage"]
|
|
llm_output = {"token_usage": token_usage}
|
|
return ChatResult(generations=generations, llm_output=llm_output)
|
|
|
|
|
|
class ChatHunyuan(BaseChatModel):
|
|
"""Tencent Hunyuan chat models API by Tencent.
|
|
|
|
For more information, see https://cloud.tencent.com/document/product/1729
|
|
"""
|
|
|
|
@property
|
|
def lc_secrets(self) -> Dict[str, str]:
|
|
return {
|
|
"hunyuan_app_id": "HUNYUAN_APP_ID",
|
|
"hunyuan_secret_id": "HUNYUAN_SECRET_ID",
|
|
"hunyuan_secret_key": "HUNYUAN_SECRET_KEY",
|
|
}
|
|
|
|
@property
|
|
def lc_serializable(self) -> bool:
|
|
return True
|
|
|
|
hunyuan_app_id: Optional[int] = None
|
|
"""Hunyuan App ID"""
|
|
hunyuan_secret_id: Optional[str] = None
|
|
"""Hunyuan Secret ID"""
|
|
hunyuan_secret_key: Optional[SecretStr] = None
|
|
"""Hunyuan Secret Key"""
|
|
streaming: bool = False
|
|
"""Whether to stream the results or not."""
|
|
request_timeout: int = 60
|
|
"""Timeout for requests to Hunyuan API. Default is 60 seconds."""
|
|
temperature: float = 1.0
|
|
"""What sampling temperature to use."""
|
|
top_p: float = 1.0
|
|
"""What probability mass to use."""
|
|
model: str = "hunyuan-lite"
|
|
"""What Model to use.
|
|
Optional model:
|
|
- hunyuan-lite、
|
|
- hunyuan-standard
|
|
- hunyuan-standard-256K
|
|
- hunyuan-pro
|
|
- hunyuan-code
|
|
- hunyuan-role
|
|
- hunyuan-functioncall
|
|
- hunyuan-vision
|
|
"""
|
|
stream_moderation: bool = False
|
|
"""Whether to review the results or not when streaming is true."""
|
|
enable_enhancement: bool = True
|
|
"""Whether to enhancement the results or not."""
|
|
|
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
"""Holds any model parameters valid for API call not explicitly specified."""
|
|
|
|
class Config:
|
|
allow_population_by_field_name = True
|
|
|
|
@root_validator(pre=True)
|
|
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
|
"""Build extra kwargs from additional params that were passed in."""
|
|
all_required_field_names = get_pydantic_field_names(cls)
|
|
extra = values.get("model_kwargs", {})
|
|
for field_name in list(values):
|
|
if field_name in extra:
|
|
raise ValueError(f"Found {field_name} supplied twice.")
|
|
if field_name not in all_required_field_names:
|
|
logger.warning(
|
|
f"""WARNING! {field_name} is not default parameter.
|
|
{field_name} was transferred to model_kwargs.
|
|
Please confirm that {field_name} is what you intended."""
|
|
)
|
|
extra[field_name] = values.pop(field_name)
|
|
|
|
invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
|
|
if invalid_model_kwargs:
|
|
raise ValueError(
|
|
f"Parameters {invalid_model_kwargs} should be specified explicitly. "
|
|
f"Instead they were passed in as part of `model_kwargs` parameter."
|
|
)
|
|
|
|
values["model_kwargs"] = extra
|
|
return values
|
|
|
|
@pre_init
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
values["hunyuan_app_id"] = get_from_dict_or_env(
|
|
values,
|
|
"hunyuan_app_id",
|
|
"HUNYUAN_APP_ID",
|
|
)
|
|
values["hunyuan_secret_id"] = get_from_dict_or_env(
|
|
values,
|
|
"hunyuan_secret_id",
|
|
"HUNYUAN_SECRET_ID",
|
|
)
|
|
values["hunyuan_secret_key"] = convert_to_secret_str(
|
|
get_from_dict_or_env(
|
|
values,
|
|
"hunyuan_secret_key",
|
|
"HUNYUAN_SECRET_KEY",
|
|
)
|
|
)
|
|
return values
|
|
|
|
@property
|
|
def _default_params(self) -> Dict[str, Any]:
|
|
"""Get the default parameters for calling Hunyuan API."""
|
|
normal_params = {
|
|
"Temperature": self.temperature,
|
|
"TopP": self.top_p,
|
|
"Model": self.model,
|
|
"Stream": self.streaming,
|
|
"StreamModeration": self.stream_moderation,
|
|
"EnableEnhancement": self.enable_enhancement,
|
|
}
|
|
return {**normal_params, **self.model_kwargs}
|
|
|
|
def _generate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
if self.streaming:
|
|
stream_iter = self._stream(
|
|
messages=messages, stop=stop, run_manager=run_manager, **kwargs
|
|
)
|
|
return generate_from_stream(stream_iter)
|
|
|
|
res = self._chat(messages, **kwargs)
|
|
return _create_chat_result(json.loads(res.to_json_string()))
|
|
|
|
def _stream(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Iterator[ChatGenerationChunk]:
|
|
res = self._chat(messages, **kwargs)
|
|
|
|
default_chunk_class = AIMessageChunk
|
|
for chunk in res:
|
|
chunk = chunk.get("data", "")
|
|
if len(chunk) == 0:
|
|
continue
|
|
response = json.loads(chunk)
|
|
if "error" in response:
|
|
raise ValueError(f"Error from Hunyuan api response: {response}")
|
|
|
|
for choice in response["Choices"]:
|
|
chunk = _convert_delta_to_message_chunk(
|
|
choice["Delta"], default_chunk_class
|
|
)
|
|
default_chunk_class = chunk.__class__
|
|
cg_chunk = ChatGenerationChunk(message=chunk)
|
|
if run_manager:
|
|
run_manager.on_llm_new_token(chunk.content, chunk=cg_chunk)
|
|
yield cg_chunk
|
|
|
|
def _chat(self, messages: List[BaseMessage], **kwargs: Any) -> Any:
|
|
if self.hunyuan_secret_key is None:
|
|
raise ValueError("Hunyuan secret key is not set.")
|
|
|
|
try:
|
|
from tencentcloud.common import credential
|
|
from tencentcloud.hunyuan.v20230901 import hunyuan_client, models
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import tencentcloud python package. "
|
|
"Please install it with `pip install tencentcloud-sdk-python`."
|
|
)
|
|
|
|
parameters = {**self._default_params, **kwargs}
|
|
cred = credential.Credential(
|
|
self.hunyuan_secret_id, str(self.hunyuan_secret_key.get_secret_value())
|
|
)
|
|
client = hunyuan_client.HunyuanClient(cred, "")
|
|
req = models.ChatCompletionsRequest()
|
|
params = {
|
|
"Messages": [_convert_message_to_dict(m) for m in messages],
|
|
**parameters,
|
|
}
|
|
req.from_json_string(json.dumps(params))
|
|
resp = client.ChatCompletions(req)
|
|
return resp
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
return "hunyuan-chat"
|