mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-14 03:27:29 +00:00
Upgrade to using a literal for specifying the extra which is the recommended approach in pydantic 2. This works correctly also in pydantic v1. ```python from pydantic.v1 import BaseModel class Foo(BaseModel, extra="forbid"): x: int Foo(x=5, y=1) ``` And ```python from pydantic.v1 import BaseModel class Foo(BaseModel): x: int class Config: extra = "forbid" Foo(x=5, y=1) ``` ## Enum -> literal using grit pattern: ``` engine marzano(0.1) language python or { `extra=Extra.allow` => `extra="allow"`, `extra=Extra.forbid` => `extra="forbid"`, `extra=Extra.ignore` => `extra="ignore"` } ``` Resorted attributes in config and removed doc-string in case we will need to deal with going back and forth between pydantic v1 and v2 during the 0.3 release. (This will reduce merge conflicts.) ## Sort attributes in Config: ``` engine marzano(0.1) language python function sort($values) js { return $values.text.split(',').sort().join("\n"); } class_definition($name, $body) as $C where { $name <: `Config`, $body <: block($statements), $values = [], $statements <: some bubble($values) assignment() as $A where { $values += $A }, $body => sort($values), } ```
142 lines
4.8 KiB
Python
142 lines
4.8 KiB
Python
from typing import Any, Dict, List, Mapping, Optional
|
|
|
|
import requests
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.pydantic_v1 import BaseModel
|
|
from langchain_core.utils import get_from_dict_or_env, pre_init
|
|
|
|
DEFAULT_MODEL_ID = "sentence-transformers/clip-ViT-B-32"
|
|
MAX_BATCH_SIZE = 1024
|
|
|
|
|
|
class DeepInfraEmbeddings(BaseModel, Embeddings):
|
|
"""Deep Infra's embedding inference service.
|
|
|
|
To use, you should have the
|
|
environment variable ``DEEPINFRA_API_TOKEN`` set with your API token, or pass
|
|
it as a named parameter to the constructor.
|
|
There are multiple embeddings models available,
|
|
see https://deepinfra.com/models?type=embeddings.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.embeddings import DeepInfraEmbeddings
|
|
deepinfra_emb = DeepInfraEmbeddings(
|
|
model_id="sentence-transformers/clip-ViT-B-32",
|
|
deepinfra_api_token="my-api-key"
|
|
)
|
|
r1 = deepinfra_emb.embed_documents(
|
|
[
|
|
"Alpha is the first letter of Greek alphabet",
|
|
"Beta is the second letter of Greek alphabet",
|
|
]
|
|
)
|
|
r2 = deepinfra_emb.embed_query(
|
|
"What is the second letter of Greek alphabet"
|
|
)
|
|
|
|
"""
|
|
|
|
model_id: str = DEFAULT_MODEL_ID
|
|
"""Embeddings model to use."""
|
|
normalize: bool = False
|
|
"""whether to normalize the computed embeddings"""
|
|
embed_instruction: str = "passage: "
|
|
"""Instruction used to embed documents."""
|
|
query_instruction: str = "query: "
|
|
"""Instruction used to embed the query."""
|
|
model_kwargs: Optional[dict] = None
|
|
"""Other model keyword args"""
|
|
deepinfra_api_token: Optional[str] = None
|
|
"""API token for Deep Infra. If not provided, the token is
|
|
fetched from the environment variable 'DEEPINFRA_API_TOKEN'."""
|
|
batch_size: int = MAX_BATCH_SIZE
|
|
"""Batch size for embedding requests."""
|
|
|
|
class Config:
|
|
extra = "forbid"
|
|
|
|
@pre_init
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that api key and python package exists in environment."""
|
|
deepinfra_api_token = get_from_dict_or_env(
|
|
values, "deepinfra_api_token", "DEEPINFRA_API_TOKEN"
|
|
)
|
|
values["deepinfra_api_token"] = deepinfra_api_token
|
|
return values
|
|
|
|
@property
|
|
def _identifying_params(self) -> Mapping[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
return {"model_id": self.model_id}
|
|
|
|
def _embed(self, input: List[str]) -> List[List[float]]:
|
|
_model_kwargs = self.model_kwargs or {}
|
|
# HTTP headers for authorization
|
|
headers = {
|
|
"Authorization": f"bearer {self.deepinfra_api_token}",
|
|
"Content-Type": "application/json",
|
|
}
|
|
# send request
|
|
try:
|
|
res = requests.post(
|
|
f"https://api.deepinfra.com/v1/inference/{self.model_id}",
|
|
headers=headers,
|
|
json={"inputs": input, "normalize": self.normalize, **_model_kwargs},
|
|
)
|
|
except requests.exceptions.RequestException as e:
|
|
raise ValueError(f"Error raised by inference endpoint: {e}")
|
|
|
|
if res.status_code != 200:
|
|
raise ValueError(
|
|
"Error raised by inference API HTTP code: %s, %s"
|
|
% (res.status_code, res.text)
|
|
)
|
|
try:
|
|
t = res.json()
|
|
embeddings = t["embeddings"]
|
|
except requests.exceptions.JSONDecodeError as e:
|
|
raise ValueError(
|
|
f"Error raised by inference API: {e}.\nResponse: {res.text}"
|
|
)
|
|
|
|
return embeddings
|
|
|
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
"""Embed documents using a Deep Infra deployed embedding model.
|
|
For larger batches, the input list of texts is chunked into smaller
|
|
batches to avoid exceeding the maximum request size.
|
|
|
|
Args:
|
|
texts: The list of texts to embed.
|
|
|
|
Returns:
|
|
List of embeddings, one for each text.
|
|
"""
|
|
|
|
embeddings = []
|
|
instruction_pairs = [f"{self.embed_instruction}{text}" for text in texts]
|
|
|
|
chunks = [
|
|
instruction_pairs[i : i + self.batch_size]
|
|
for i in range(0, len(instruction_pairs), self.batch_size)
|
|
]
|
|
for chunk in chunks:
|
|
embeddings += self._embed(chunk)
|
|
|
|
return embeddings
|
|
|
|
def embed_query(self, text: str) -> List[float]:
|
|
"""Embed a query using a Deep Infra deployed embedding model.
|
|
|
|
Args:
|
|
text: The text to embed.
|
|
|
|
Returns:
|
|
Embeddings for the text.
|
|
"""
|
|
instruction_pair = f"{self.query_instruction}{text}"
|
|
embedding = self._embed([instruction_pair])[0]
|
|
return embedding
|