langchain/libs/community/langchain_community/embeddings/llm_rails.py
Eugene Yurtsev bf5193bb99
community[patch]: Upgrade pydantic extra (#25185)
Upgrade to using a literal for specifying the extra which is the
recommended approach in pydantic 2.

This works correctly also in pydantic v1.

```python
from pydantic.v1 import BaseModel

class Foo(BaseModel, extra="forbid"):
    x: int

Foo(x=5, y=1)
```

And 


```python
from pydantic.v1 import BaseModel

class Foo(BaseModel):
    x: int

    class Config:
      extra = "forbid"

Foo(x=5, y=1)
```


## Enum -> literal using grit pattern:

```
engine marzano(0.1)
language python
or {
    `extra=Extra.allow` => `extra="allow"`,
    `extra=Extra.forbid` => `extra="forbid"`,
    `extra=Extra.ignore` => `extra="ignore"`
}
```

Resorted attributes in config and removed doc-string in case we will
need to deal with going back and forth between pydantic v1 and v2 during
the 0.3 release. (This will reduce merge conflicts.)


## Sort attributes in Config:

```
engine marzano(0.1)
language python


function sort($values) js {
    return $values.text.split(',').sort().join("\n");
}


class_definition($name, $body) as $C where {
    $name <: `Config`,
    $body <: block($statements),
    $values = [],
    $statements <: some bubble($values) assignment() as $A where {
        $values += $A
    },
    $body => sort($values),
}

```
2024-08-08 17:20:39 +00:00

74 lines
2.2 KiB
Python

"""This file is for LLMRails Embedding"""
from typing import Dict, List, Optional
import requests
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, SecretStr
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init
class LLMRailsEmbeddings(BaseModel, Embeddings):
"""LLMRails embedding models.
To use, you should have the environment
variable ``LLM_RAILS_API_KEY`` set with your API key or pass it
as a named parameter to the constructor.
Model can be one of ["embedding-english-v1","embedding-multi-v1"]
Example:
.. code-block:: python
from langchain_community.embeddings import LLMRailsEmbeddings
cohere = LLMRailsEmbeddings(
model="embedding-english-v1", api_key="my-api-key"
)
"""
model: str = "embedding-english-v1"
"""Model name to use."""
api_key: Optional[SecretStr] = None
"""LLMRails API key."""
class Config:
extra = "forbid"
@pre_init
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key exists in environment."""
api_key = convert_to_secret_str(
get_from_dict_or_env(values, "api_key", "LLM_RAILS_API_KEY")
)
values["api_key"] = api_key
return values
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Call out to Cohere's embedding endpoint.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
response = requests.post(
"https://api.llmrails.com/v1/embeddings",
headers={"X-API-KEY": self.api_key.get_secret_value()}, # type: ignore[union-attr]
json={"input": texts, "model": self.model},
timeout=60,
)
return [item["embedding"] for item in response.json()["data"]]
def embed_query(self, text: str) -> List[float]:
"""Call out to Cohere's embedding endpoint.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
return self.embed_documents([text])[0]