mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-07 15:36:30 +00:00
Upgrade to using a literal for specifying the extra which is the recommended approach in pydantic 2. This works correctly also in pydantic v1. ```python from pydantic.v1 import BaseModel class Foo(BaseModel, extra="forbid"): x: int Foo(x=5, y=1) ``` And ```python from pydantic.v1 import BaseModel class Foo(BaseModel): x: int class Config: extra = "forbid" Foo(x=5, y=1) ``` ## Enum -> literal using grit pattern: ``` engine marzano(0.1) language python or { `extra=Extra.allow` => `extra="allow"`, `extra=Extra.forbid` => `extra="forbid"`, `extra=Extra.ignore` => `extra="ignore"` } ``` Resorted attributes in config and removed doc-string in case we will need to deal with going back and forth between pydantic v1 and v2 during the 0.3 release. (This will reduce merge conflicts.) ## Sort attributes in Config: ``` engine marzano(0.1) language python function sort($values) js { return $values.text.split(',').sort().join("\n"); } class_definition($name, $body) as $C where { $name <: `Config`, $body <: block($statements), $values = [], $statements <: some bubble($values) assignment() as $A where { $values += $A }, $body => sort($values), } ```
80 lines
2.3 KiB
Python
80 lines
2.3 KiB
Python
"""Util that calls Lambda."""
|
|
|
|
import json
|
|
from typing import Any, Dict, Optional
|
|
|
|
from langchain_core.pydantic_v1 import BaseModel, root_validator
|
|
|
|
|
|
class LambdaWrapper(BaseModel):
|
|
"""Wrapper for AWS Lambda SDK.
|
|
To use, you should have the ``boto3`` package installed
|
|
and a lambda functions built from the AWS Console or
|
|
CLI. Set up your AWS credentials with ``aws configure``
|
|
|
|
Example:
|
|
.. code-block:: bash
|
|
|
|
pip install boto3
|
|
|
|
aws configure
|
|
|
|
"""
|
|
|
|
lambda_client: Any #: :meta private:
|
|
"""The configured boto3 client"""
|
|
function_name: Optional[str] = None
|
|
"""The name of your lambda function"""
|
|
awslambda_tool_name: Optional[str] = None
|
|
"""If passing to an agent as a tool, the tool name"""
|
|
awslambda_tool_description: Optional[str] = None
|
|
"""If passing to an agent as a tool, the description"""
|
|
|
|
class Config:
|
|
extra = "forbid"
|
|
|
|
@root_validator(pre=True)
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that python package exists in environment."""
|
|
|
|
try:
|
|
import boto3
|
|
|
|
except ImportError:
|
|
raise ImportError(
|
|
"boto3 is not installed. Please install it with `pip install boto3`"
|
|
)
|
|
|
|
values["lambda_client"] = boto3.client("lambda")
|
|
return values
|
|
|
|
def run(self, query: str) -> str:
|
|
"""
|
|
Invokes the lambda function and returns the
|
|
result.
|
|
|
|
Args:
|
|
query: an input to passed to the lambda
|
|
function as the ``body`` of a JSON
|
|
object.
|
|
"""
|
|
res = self.lambda_client.invoke(
|
|
FunctionName=self.function_name,
|
|
InvocationType="RequestResponse",
|
|
Payload=json.dumps({"body": query}),
|
|
)
|
|
|
|
try:
|
|
payload_stream = res["Payload"]
|
|
payload_string = payload_stream.read().decode("utf-8")
|
|
answer = json.loads(payload_string)["body"]
|
|
|
|
except StopIteration:
|
|
return "Failed to parse response from Lambda"
|
|
|
|
if answer is None or answer == "":
|
|
# We don't want to return the assumption alone if answer is empty
|
|
return "Request failed."
|
|
else:
|
|
return f"Result: {answer}"
|