langchain/docs/extras/integrations/memory/aws_dynamodb.ipynb
Leonid Ganeline 240190db3f
docs: integrations/memory consistency (#10255)
- updated titles and descriptions of the `integrations/memory` notebooks
into consistent and laconic format;
- removed
`docs/extras/integrations/memory/motorhead_memory_managed.ipynb` file as
a duplicate of the
`docs/extras/integrations/memory/motorhead_memory.ipynb`;
- added `integrations/providers` Integration Cards for `dynamodb`,
`motorhead`.
- updated `integrations/providers/redis.mdx` with links
- renamed several notebooks; updated `vercel.json` to reroute new names.
2023-09-30 16:35:55 -07:00

372 lines
12 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "91c6a7ef",
"metadata": {},
"source": [
"# AWS DynamoDB\n",
"\n",
">[Amazon AWS DynamoDB](https://awscli.amazonaws.com/v2/documentation/api/latest/reference/dynamodb/index.html) is a fully managed `NoSQL` database service that provides fast and predictable performance with seamless scalability.\n",
"\n",
"This notebook goes over how to use `DynamoDB` to store chat message history."
]
},
{
"cell_type": "markdown",
"id": "3f608be0",
"metadata": {},
"source": [
"First make sure you have correctly configured the [AWS CLI](https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html). Then make sure you have installed `boto3`."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3a7e89c2-4c55-4a66-91ec-9bf9a37467eb",
"metadata": {},
"outputs": [],
"source": [
"!pip install boto3"
]
},
{
"cell_type": "markdown",
"id": "030d784f",
"metadata": {},
"source": [
"Next, create the `DynamoDB` Table where we will be storing messages:"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "93ce1811",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0\n"
]
}
],
"source": [
"import boto3\n",
"\n",
"# Get the service resource.\n",
"dynamodb = boto3.resource(\"dynamodb\")\n",
"\n",
"# Create the DynamoDB table.\n",
"table = dynamodb.create_table(\n",
" TableName=\"SessionTable\",\n",
" KeySchema=[{\"AttributeName\": \"SessionId\", \"KeyType\": \"HASH\"}],\n",
" AttributeDefinitions=[{\"AttributeName\": \"SessionId\", \"AttributeType\": \"S\"}],\n",
" BillingMode=\"PAY_PER_REQUEST\",\n",
")\n",
"\n",
"# Wait until the table exists.\n",
"table.meta.client.get_waiter(\"table_exists\").wait(TableName=\"SessionTable\")\n",
"\n",
"# Print out some data about the table.\n",
"print(table.item_count)"
]
},
{
"cell_type": "markdown",
"id": "1a9b310b",
"metadata": {},
"source": [
"## DynamoDBChatMessageHistory"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "d15e3302",
"metadata": {},
"outputs": [],
"source": [
"from langchain.memory.chat_message_histories import DynamoDBChatMessageHistory\n",
"\n",
"history = DynamoDBChatMessageHistory(table_name=\"SessionTable\", session_id=\"0\")\n",
"\n",
"history.add_user_message(\"hi!\")\n",
"\n",
"history.add_ai_message(\"whats up?\")"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "64fc465e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[HumanMessage(content='hi!', additional_kwargs={}, example=False),\n",
" AIMessage(content='whats up?', additional_kwargs={}, example=False),\n",
" HumanMessage(content='hi!', additional_kwargs={}, example=False),\n",
" AIMessage(content='whats up?', additional_kwargs={}, example=False)]"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"history.messages"
]
},
{
"cell_type": "markdown",
"id": "955f1b15",
"metadata": {},
"source": [
"## DynamoDBChatMessageHistory with Custom Endpoint URL\n",
"\n",
"Sometimes it is useful to specify the URL to the AWS endpoint to connect to. For instance, when you are running locally against [Localstack](https://localstack.cloud/). For those cases you can specify the URL via the `endpoint_url` parameter in the constructor."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "225713c8",
"metadata": {},
"outputs": [],
"source": [
"from langchain.memory.chat_message_histories import DynamoDBChatMessageHistory\n",
"\n",
"history = DynamoDBChatMessageHistory(\n",
" table_name=\"SessionTable\",\n",
" session_id=\"0\",\n",
" endpoint_url=\"http://localhost.localstack.cloud:4566\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "97f8578a",
"metadata": {},
"source": [
"## DynamoDBChatMessageHistory With Different Keys Composite Keys\n",
"The default key for DynamoDBChatMessageHistory is ```{\"SessionId\": self.session_id}```, but you can modify this to match your table design.\n",
"\n",
"### Primary Key Name\n",
"You may modify the primary key by passing in a primary_key_name value in the constructor, resulting in the following:\n",
"```{self.primary_key_name: self.session_id}```\n",
"\n",
"### Composite Keys\n",
"When using an existing DynamoDB table, you may need to modify the key structure from the default of to something including a Sort Key. To do this you may use the ```key``` parameter.\n",
"\n",
"Passing a value for key will override the primary_key parameter, and the resulting key structure will be the passed value.\n"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "088c037c",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0\n"
]
},
{
"data": {
"text/plain": [
"[HumanMessage(content='hello, composite dynamodb table!', additional_kwargs={}, example=False)]"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.memory.chat_message_histories import DynamoDBChatMessageHistory\n",
"\n",
"composite_table = dynamodb.create_table(\n",
" TableName=\"CompositeTable\",\n",
" KeySchema=[{\"AttributeName\": \"PK\", \"KeyType\": \"HASH\"}, {\"AttributeName\": \"SK\", \"KeyType\": \"RANGE\"}],\n",
" AttributeDefinitions=[{\"AttributeName\": \"PK\", \"AttributeType\": \"S\"}, {\"AttributeName\": \"SK\", \"AttributeType\": \"S\"}],\n",
" BillingMode=\"PAY_PER_REQUEST\",\n",
")\n",
"\n",
"# Wait until the table exists.\n",
"composite_table.meta.client.get_waiter(\"table_exists\").wait(TableName=\"CompositeTable\")\n",
"\n",
"# Print out some data about the table.\n",
"print(composite_table.item_count)\n",
"\n",
"my_key = {\n",
" \"PK\": \"session_id::0\",\n",
" \"SK\": \"langchain_history\",\n",
"}\n",
"\n",
"composite_key_history = DynamoDBChatMessageHistory(\n",
" table_name=\"CompositeTable\",\n",
" session_id=\"0\",\n",
" endpoint_url=\"http://localhost.localstack.cloud:4566\",\n",
" key=my_key,\n",
")\n",
"\n",
"composite_key_history.add_user_message(\"hello, composite dynamodb table!\")\n",
"\n",
"composite_key_history.messages"
]
},
{
"cell_type": "markdown",
"id": "3b33c988",
"metadata": {},
"source": [
"## Agent with DynamoDB Memory"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "f92d9499",
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import Tool\n",
"from langchain.memory import ConversationBufferMemory\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.agents import initialize_agent\n",
"from langchain.agents import AgentType\n",
"from langchain.utilities import PythonREPL\n",
"from getpass import getpass\n",
"\n",
"message_history = DynamoDBChatMessageHistory(table_name=\"SessionTable\", session_id=\"1\")\n",
"memory = ConversationBufferMemory(\n",
" memory_key=\"chat_history\", chat_memory=message_history, return_messages=True\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "1167eeba",
"metadata": {},
"outputs": [],
"source": [
"python_repl = PythonREPL()\n",
"\n",
"# You can create the tool to pass to an agent\n",
"tools = [\n",
" Tool(\n",
" name=\"python_repl\",\n",
" description=\"A Python shell. Use this to execute python commands. Input should be a valid python command. If you want to see the output of a value, you should print it out with `print(...)`.\",\n",
" func=python_repl.run,\n",
" )\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "fce085c5",
"metadata": {},
"outputs": [
{
"ename": "ValidationError",
"evalue": "1 validation error for ChatOpenAI\n__root__\n Did not find openai_api_key, please add an environment variable `OPENAI_API_KEY` which contains it, or pass `openai_api_key` as a named parameter. (type=value_error)",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mValidationError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[17], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m llm \u001b[38;5;241m=\u001b[39m \u001b[43mChatOpenAI\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtemperature\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2\u001b[0m agent_chain \u001b[38;5;241m=\u001b[39m initialize_agent(\n\u001b[1;32m 3\u001b[0m tools,\n\u001b[1;32m 4\u001b[0m llm,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 7\u001b[0m memory\u001b[38;5;241m=\u001b[39mmemory,\n\u001b[1;32m 8\u001b[0m )\n",
"File \u001b[0;32m~/Documents/projects/langchain/libs/langchain/langchain/load/serializable.py:74\u001b[0m, in \u001b[0;36mSerializable.__init__\u001b[0;34m(self, **kwargs)\u001b[0m\n\u001b[1;32m 73\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m__init__\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: Any) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m---> 74\u001b[0m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[38;5;21;43m__init__\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 75\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lc_kwargs \u001b[38;5;241m=\u001b[39m kwargs\n",
"File \u001b[0;32m~/Documents/projects/langchain/.venv/lib/python3.9/site-packages/pydantic/main.py:341\u001b[0m, in \u001b[0;36mpydantic.main.BaseModel.__init__\u001b[0;34m()\u001b[0m\n",
"\u001b[0;31mValidationError\u001b[0m: 1 validation error for ChatOpenAI\n__root__\n Did not find openai_api_key, please add an environment variable `OPENAI_API_KEY` which contains it, or pass `openai_api_key` as a named parameter. (type=value_error)"
]
}
],
"source": [
"llm = ChatOpenAI(temperature=0)\n",
"agent_chain = initialize_agent(\n",
" tools,\n",
" llm,\n",
" agent=AgentType.CHAT_CONVERSATIONAL_REACT_DESCRIPTION,\n",
" verbose=True,\n",
" memory=memory,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "952a3103",
"metadata": {},
"outputs": [],
"source": [
"agent_chain.run(input=\"Hello!\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "54c4aaf4",
"metadata": {},
"outputs": [],
"source": [
"agent_chain.run(input=\"Who owns Twitter?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f9013118",
"metadata": {},
"outputs": [],
"source": [
"agent_chain.run(input=\"My name is Bob.\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "405e5315",
"metadata": {},
"outputs": [],
"source": [
"agent_chain.run(input=\"Who am I?\")\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}