mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-29 11:09:07 +00:00
…tch]: import models from community ran ```bash git grep -l 'from langchain\.chat_models' | xargs -L 1 sed -i '' "s/from\ langchain\.chat_models/from\ langchain_community.chat_models/g" git grep -l 'from langchain\.llms' | xargs -L 1 sed -i '' "s/from\ langchain\.llms/from\ langchain_community.llms/g" git grep -l 'from langchain\.embeddings' | xargs -L 1 sed -i '' "s/from\ langchain\.embeddings/from\ langchain_community.embeddings/g" git checkout master libs/langchain/tests/unit_tests/llms git checkout master libs/langchain/tests/unit_tests/chat_models git checkout master libs/langchain/tests/unit_tests/embeddings/test_imports.py make format cd libs/langchain; make format cd ../experimental; make format cd ../core; make format ```
139 lines
3.8 KiB
Plaintext
139 lines
3.8 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Arcee\n",
|
|
"This notebook demonstrates how to use the `Arcee` class for generating text using Arcee's Domain Adapted Language Models (DALMs)."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Setup\n",
|
|
"\n",
|
|
"Before using Arcee, make sure the Arcee API key is set as `ARCEE_API_KEY` environment variable. You can also pass the api key as a named parameter."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain_community.llms import Arcee\n",
|
|
"\n",
|
|
"# Create an instance of the Arcee class\n",
|
|
"arcee = Arcee(\n",
|
|
" model=\"DALM-PubMed\",\n",
|
|
" # arcee_api_key=\"ARCEE-API-KEY\" # if not already set in the environment\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Additional Configuration\n",
|
|
"\n",
|
|
"You can also configure Arcee's parameters such as `arcee_api_url`, `arcee_app_url`, and `model_kwargs` as needed.\n",
|
|
"Setting the `model_kwargs` at the object initialization uses the parameters as default for all the subsequent calls to the generate response."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"arcee = Arcee(\n",
|
|
" model=\"DALM-Patent\",\n",
|
|
" # arcee_api_key=\"ARCEE-API-KEY\", # if not already set in the environment\n",
|
|
" arcee_api_url=\"https://custom-api.arcee.ai\", # default is https://api.arcee.ai\n",
|
|
" arcee_app_url=\"https://custom-app.arcee.ai\", # default is https://app.arcee.ai\n",
|
|
" model_kwargs={\n",
|
|
" \"size\": 5,\n",
|
|
" \"filters\": [\n",
|
|
" {\n",
|
|
" \"field_name\": \"document\",\n",
|
|
" \"filter_type\": \"fuzzy_search\",\n",
|
|
" \"value\": \"Einstein\",\n",
|
|
" }\n",
|
|
" ],\n",
|
|
" },\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Generating Text\n",
|
|
"\n",
|
|
"You can generate text from Arcee by providing a prompt. Here's an example:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Generate text\n",
|
|
"prompt = \"Can AI-driven music therapy contribute to the rehabilitation of patients with disorders of consciousness?\"\n",
|
|
"response = arcee(prompt)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Additional parameters\n",
|
|
"\n",
|
|
"Arcee allows you to apply `filters` and set the `size` (in terms of count) of retrieved document(s) to aid text generation. Filters help narrow down the results. Here's how to use these parameters:\n",
|
|
"\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Define filters\n",
|
|
"filters = [\n",
|
|
" {\"field_name\": \"document\", \"filter_type\": \"fuzzy_search\", \"value\": \"Einstein\"},\n",
|
|
" {\"field_name\": \"year\", \"filter_type\": \"strict_search\", \"value\": \"1905\"},\n",
|
|
"]\n",
|
|
"\n",
|
|
"# Generate text with filters and size params\n",
|
|
"response = arcee(prompt, size=5, filters=filters)"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": ".venv",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.10.12"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|