langchain/docs/docs/integrations/llms/arcee.ipynb
Bagatur 480626dc99
docs, community[patch], experimental[patch], langchain[patch], cli[pa… (#15412)
…tch]: import models from community

ran
```bash
git grep -l 'from langchain\.chat_models' | xargs -L 1 sed -i '' "s/from\ langchain\.chat_models/from\ langchain_community.chat_models/g"
git grep -l 'from langchain\.llms' | xargs -L 1 sed -i '' "s/from\ langchain\.llms/from\ langchain_community.llms/g"
git grep -l 'from langchain\.embeddings' | xargs -L 1 sed -i '' "s/from\ langchain\.embeddings/from\ langchain_community.embeddings/g"
git checkout master libs/langchain/tests/unit_tests/llms
git checkout master libs/langchain/tests/unit_tests/chat_models
git checkout master libs/langchain/tests/unit_tests/embeddings/test_imports.py
make format
cd libs/langchain; make format
cd ../experimental; make format
cd ../core; make format
```
2024-01-02 15:32:16 -05:00

139 lines
3.8 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Arcee\n",
"This notebook demonstrates how to use the `Arcee` class for generating text using Arcee's Domain Adapted Language Models (DALMs)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Setup\n",
"\n",
"Before using Arcee, make sure the Arcee API key is set as `ARCEE_API_KEY` environment variable. You can also pass the api key as a named parameter."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.llms import Arcee\n",
"\n",
"# Create an instance of the Arcee class\n",
"arcee = Arcee(\n",
" model=\"DALM-PubMed\",\n",
" # arcee_api_key=\"ARCEE-API-KEY\" # if not already set in the environment\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Additional Configuration\n",
"\n",
"You can also configure Arcee's parameters such as `arcee_api_url`, `arcee_app_url`, and `model_kwargs` as needed.\n",
"Setting the `model_kwargs` at the object initialization uses the parameters as default for all the subsequent calls to the generate response."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"arcee = Arcee(\n",
" model=\"DALM-Patent\",\n",
" # arcee_api_key=\"ARCEE-API-KEY\", # if not already set in the environment\n",
" arcee_api_url=\"https://custom-api.arcee.ai\", # default is https://api.arcee.ai\n",
" arcee_app_url=\"https://custom-app.arcee.ai\", # default is https://app.arcee.ai\n",
" model_kwargs={\n",
" \"size\": 5,\n",
" \"filters\": [\n",
" {\n",
" \"field_name\": \"document\",\n",
" \"filter_type\": \"fuzzy_search\",\n",
" \"value\": \"Einstein\",\n",
" }\n",
" ],\n",
" },\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Generating Text\n",
"\n",
"You can generate text from Arcee by providing a prompt. Here's an example:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Generate text\n",
"prompt = \"Can AI-driven music therapy contribute to the rehabilitation of patients with disorders of consciousness?\"\n",
"response = arcee(prompt)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Additional parameters\n",
"\n",
"Arcee allows you to apply `filters` and set the `size` (in terms of count) of retrieved document(s) to aid text generation. Filters help narrow down the results. Here's how to use these parameters:\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Define filters\n",
"filters = [\n",
" {\"field_name\": \"document\", \"filter_type\": \"fuzzy_search\", \"value\": \"Einstein\"},\n",
" {\"field_name\": \"year\", \"filter_type\": \"strict_search\", \"value\": \"1905\"},\n",
"]\n",
"\n",
"# Generate text with filters and size params\n",
"response = arcee(prompt, size=5, filters=filters)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 2
}