langchain/libs/community/langchain_community/embeddings/jina.py
Erick Friis c2a3021bb0
multiple: pydantic 2 compatibility, v0.3 (#26443)
Signed-off-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Dan O'Donovan <dan.odonovan@gmail.com>
Co-authored-by: Tom Daniel Grande <tomdgrande@gmail.com>
Co-authored-by: Grande <Tom.Daniel.Grande@statsbygg.no>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Tomaz Bratanic <bratanic.tomaz@gmail.com>
Co-authored-by: ZhangShenao <15201440436@163.com>
Co-authored-by: Friso H. Kingma <fhkingma@gmail.com>
Co-authored-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Nuno Campos <nuno@langchain.dev>
Co-authored-by: Morgante Pell <morgantep@google.com>
2024-09-13 14:38:45 -07:00

123 lines
3.8 KiB
Python

import base64
from os.path import exists
from typing import Any, Dict, List, Optional
from urllib.parse import urlparse
import requests
from langchain_core.embeddings import Embeddings
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
from pydantic import BaseModel, SecretStr, model_validator
JINA_API_URL: str = "https://api.jina.ai/v1/embeddings"
def is_local(url: str) -> bool:
"""Check if a URL is a local file.
Args:
url (str): The URL to check.
Returns:
bool: True if the URL is a local file, False otherwise.
"""
url_parsed = urlparse(url)
if url_parsed.scheme in ("file", ""): # Possibly a local file
return exists(url_parsed.path)
return False
def get_bytes_str(file_path: str) -> str:
"""Get the bytes string of a file.
Args:
file_path (str): The path to the file.
Returns:
str: The bytes string of the file.
"""
with open(file_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
class JinaEmbeddings(BaseModel, Embeddings):
"""Jina embedding models."""
session: Any #: :meta private:
model_name: str = "jina-embeddings-v2-base-en"
jina_api_key: Optional[SecretStr] = None
@model_validator(mode="before")
@classmethod
def validate_environment(cls, values: Dict) -> Any:
"""Validate that auth token exists in environment."""
try:
jina_api_key = convert_to_secret_str(
get_from_dict_or_env(values, "jina_api_key", "JINA_API_KEY")
)
except ValueError as original_exc:
try:
jina_api_key = convert_to_secret_str(
get_from_dict_or_env(values, "jina_auth_token", "JINA_AUTH_TOKEN")
)
except ValueError:
raise original_exc
session = requests.Session()
session.headers.update(
{
"Authorization": f"Bearer {jina_api_key.get_secret_value()}",
"Accept-Encoding": "identity",
"Content-type": "application/json",
}
)
values["session"] = session
return values
def _embed(self, input: Any) -> List[List[float]]:
# Call Jina AI Embedding API
resp = self.session.post( # type: ignore
JINA_API_URL, json={"input": input, "model": self.model_name}
).json()
if "data" not in resp:
raise RuntimeError(resp["detail"])
embeddings = resp["data"]
# Sort resulting embeddings by index
sorted_embeddings = sorted(embeddings, key=lambda e: e["index"]) # type: ignore
# Return just the embeddings
return [result["embedding"] for result in sorted_embeddings]
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Call out to Jina's embedding endpoint.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
return self._embed(texts)
def embed_query(self, text: str) -> List[float]:
"""Call out to Jina's embedding endpoint.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
return self._embed([text])[0]
def embed_images(self, uris: List[str]) -> List[List[float]]:
"""Call out to Jina's image embedding endpoint.
Args:
uris: The list of uris to embed.
Returns:
List of embeddings, one for each text.
"""
input = []
for uri in uris:
if is_local(uri):
input.append({"bytes": get_bytes_str(uri)})
else:
input.append({"url": uri})
return self._embed(input)