langchain/libs/community/tests/integration_tests/chat_models/test_anthropic.py
Bagatur a0c2281540
infra: update mypy 1.10, ruff 0.5 (#23721)
```python
"""python scripts/update_mypy_ruff.py"""
import glob
import tomllib
from pathlib import Path

import toml
import subprocess
import re

ROOT_DIR = Path(__file__).parents[1]


def main():
    for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True):
        print(path)
        with open(path, "rb") as f:
            pyproject = tomllib.load(f)
        try:
            pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = (
                "^1.10"
            )
            pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = (
                "^0.5"
            )
        except KeyError:
            continue
        with open(path, "w") as f:
            toml.dump(pyproject, f)
        cwd = "/".join(path.split("/")[:-1])
        completed = subprocess.run(
            "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )
        logs = completed.stdout.split("\n")

        to_ignore = {}
        for l in logs:
            if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l):
                path, line_no, error_type = re.match(
                    "^(.*)\:(\d+)\: error:.*\[(.*)\]", l
                ).groups()
                if (path, line_no) in to_ignore:
                    to_ignore[(path, line_no)].append(error_type)
                else:
                    to_ignore[(path, line_no)] = [error_type]
        print(len(to_ignore))
        for (error_path, line_no), error_types in to_ignore.items():
            all_errors = ", ".join(error_types)
            full_path = f"{cwd}/{error_path}"
            try:
                with open(full_path, "r") as f:
                    file_lines = f.readlines()
            except FileNotFoundError:
                continue
            file_lines[int(line_no) - 1] = (
                file_lines[int(line_no) - 1][:-1] + f"  # type: ignore[{all_errors}]\n"
            )
            with open(full_path, "w") as f:
                f.write("".join(file_lines))

        subprocess.run(
            "poetry run ruff format .; poetry run ruff --select I --fix .",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )


if __name__ == "__main__":
    main()

```
2024-07-03 10:33:27 -07:00

90 lines
3.2 KiB
Python

"""Test Anthropic API wrapper."""
from typing import List
import pytest
from langchain_core.callbacks import CallbackManager
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage
from langchain_core.outputs import ChatGeneration, LLMResult
from langchain_community.chat_models.anthropic import (
ChatAnthropic,
)
from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler
@pytest.mark.scheduled
def test_anthropic_call() -> None:
"""Test valid call to anthropic."""
chat = ChatAnthropic(model="test") # type: ignore[call-arg]
message = HumanMessage(content="Hello")
response = chat.invoke([message])
assert isinstance(response, AIMessage)
assert isinstance(response.content, str)
@pytest.mark.scheduled
def test_anthropic_generate() -> None:
"""Test generate method of anthropic."""
chat = ChatAnthropic(model="test") # type: ignore[call-arg]
chat_messages: List[List[BaseMessage]] = [
[HumanMessage(content="How many toes do dogs have?")]
]
messages_copy = [messages.copy() for messages in chat_messages]
result: LLMResult = chat.generate(chat_messages)
assert isinstance(result, LLMResult)
for response in result.generations[0]:
assert isinstance(response, ChatGeneration)
assert isinstance(response.text, str)
assert response.text == response.message.content
assert chat_messages == messages_copy
@pytest.mark.scheduled
def test_anthropic_streaming() -> None:
"""Test streaming tokens from anthropic."""
chat = ChatAnthropic(model="test", streaming=True) # type: ignore[call-arg]
message = HumanMessage(content="Hello")
response = chat.invoke([message])
assert isinstance(response, AIMessage)
assert isinstance(response.content, str)
@pytest.mark.scheduled
def test_anthropic_streaming_callback() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
chat = ChatAnthropic( # type: ignore[call-arg]
model="test",
streaming=True,
callback_manager=callback_manager,
verbose=True,
)
message = HumanMessage(content="Write me a sentence with 10 words.")
chat.invoke([message])
assert callback_handler.llm_streams > 1
@pytest.mark.scheduled
async def test_anthropic_async_streaming_callback() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
chat = ChatAnthropic( # type: ignore[call-arg]
model="test",
streaming=True,
callback_manager=callback_manager,
verbose=True,
)
chat_messages: List[BaseMessage] = [
HumanMessage(content="How many toes do dogs have?")
]
result: LLMResult = await chat.agenerate([chat_messages])
assert callback_handler.llm_streams > 1
assert isinstance(result, LLMResult)
for response in result.generations[0]:
assert isinstance(response, ChatGeneration)
assert isinstance(response.text, str)
assert response.text == response.message.content