mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-18 21:41:24 +00:00
```python """python scripts/update_mypy_ruff.py""" import glob import tomllib from pathlib import Path import toml import subprocess import re ROOT_DIR = Path(__file__).parents[1] def main(): for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True): print(path) with open(path, "rb") as f: pyproject = tomllib.load(f) try: pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = ( "^1.10" ) pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = ( "^0.5" ) except KeyError: continue with open(path, "w") as f: toml.dump(pyproject, f) cwd = "/".join(path.split("/")[:-1]) completed = subprocess.run( "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color", cwd=cwd, shell=True, capture_output=True, text=True, ) logs = completed.stdout.split("\n") to_ignore = {} for l in logs: if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l): path, line_no, error_type = re.match( "^(.*)\:(\d+)\: error:.*\[(.*)\]", l ).groups() if (path, line_no) in to_ignore: to_ignore[(path, line_no)].append(error_type) else: to_ignore[(path, line_no)] = [error_type] print(len(to_ignore)) for (error_path, line_no), error_types in to_ignore.items(): all_errors = ", ".join(error_types) full_path = f"{cwd}/{error_path}" try: with open(full_path, "r") as f: file_lines = f.readlines() except FileNotFoundError: continue file_lines[int(line_no) - 1] = ( file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n" ) with open(full_path, "w") as f: f.write("".join(file_lines)) subprocess.run( "poetry run ruff format .; poetry run ruff --select I --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) if __name__ == "__main__": main() ```
72 lines
2.4 KiB
Python
72 lines
2.4 KiB
Python
"""Test EdenAI API wrapper."""
|
|
|
|
from typing import List
|
|
|
|
import pytest
|
|
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage
|
|
from langchain_core.outputs import ChatGeneration, LLMResult
|
|
|
|
from langchain_community.chat_models.edenai import (
|
|
ChatEdenAI,
|
|
)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_chat_edenai() -> None:
|
|
"""Test ChatEdenAI wrapper."""
|
|
chat = ChatEdenAI( # type: ignore[call-arg]
|
|
provider="openai", model="gpt-3.5-turbo", temperature=0, max_tokens=1000
|
|
)
|
|
message = HumanMessage(content="Who are you ?")
|
|
response = chat.invoke([message])
|
|
assert isinstance(response, AIMessage)
|
|
assert isinstance(response.content, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_edenai_generate() -> None:
|
|
"""Test generate method of edenai."""
|
|
chat = ChatEdenAI(provider="google") # type: ignore[call-arg]
|
|
chat_messages: List[List[BaseMessage]] = [
|
|
[HumanMessage(content="What is the meaning of life?")]
|
|
]
|
|
messages_copy = [messages.copy() for messages in chat_messages]
|
|
result: LLMResult = chat.generate(chat_messages)
|
|
assert isinstance(result, LLMResult)
|
|
for response in result.generations[0]:
|
|
assert isinstance(response, ChatGeneration)
|
|
assert isinstance(response.text, str)
|
|
assert response.text == response.message.content
|
|
assert chat_messages == messages_copy
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
async def test_edenai_async_generate() -> None:
|
|
"""Test async generation."""
|
|
chat = ChatEdenAI(provider="google", max_tokens=50) # type: ignore[call-arg]
|
|
message = HumanMessage(content="Hello")
|
|
result: LLMResult = await chat.agenerate([[message], [message]])
|
|
assert isinstance(result, LLMResult)
|
|
for response in result.generations[0]:
|
|
assert isinstance(response, ChatGeneration)
|
|
assert isinstance(response.text, str)
|
|
assert response.text == response.message.content
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_edenai_streaming() -> None:
|
|
"""Test streaming EdenAI chat."""
|
|
llm = ChatEdenAI(provider="openai", max_tokens=50) # type: ignore[call-arg]
|
|
|
|
for chunk in llm.stream("Generate a high fantasy story."):
|
|
assert isinstance(chunk.content, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
async def test_edenai_astream() -> None:
|
|
"""Test streaming from EdenAI."""
|
|
llm = ChatEdenAI(provider="openai", max_tokens=50) # type: ignore[call-arg]
|
|
|
|
async for token in llm.astream("Generate a high fantasy story."):
|
|
assert isinstance(token.content, str)
|