mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-31 20:19:43 +00:00
```python """python scripts/update_mypy_ruff.py""" import glob import tomllib from pathlib import Path import toml import subprocess import re ROOT_DIR = Path(__file__).parents[1] def main(): for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True): print(path) with open(path, "rb") as f: pyproject = tomllib.load(f) try: pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = ( "^1.10" ) pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = ( "^0.5" ) except KeyError: continue with open(path, "w") as f: toml.dump(pyproject, f) cwd = "/".join(path.split("/")[:-1]) completed = subprocess.run( "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color", cwd=cwd, shell=True, capture_output=True, text=True, ) logs = completed.stdout.split("\n") to_ignore = {} for l in logs: if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l): path, line_no, error_type = re.match( "^(.*)\:(\d+)\: error:.*\[(.*)\]", l ).groups() if (path, line_no) in to_ignore: to_ignore[(path, line_no)].append(error_type) else: to_ignore[(path, line_no)] = [error_type] print(len(to_ignore)) for (error_path, line_no), error_types in to_ignore.items(): all_errors = ", ".join(error_types) full_path = f"{cwd}/{error_path}" try: with open(full_path, "r") as f: file_lines = f.readlines() except FileNotFoundError: continue file_lines[int(line_no) - 1] = ( file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n" ) with open(full_path, "w") as f: f.write("".join(file_lines)) subprocess.run( "poetry run ruff format .; poetry run ruff --select I --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) if __name__ == "__main__": main() ```
98 lines
3.2 KiB
Python
98 lines
3.2 KiB
Python
"""Test self-hosted embeddings."""
|
|
|
|
from typing import Any
|
|
|
|
from langchain_community.embeddings import (
|
|
SelfHostedEmbeddings,
|
|
SelfHostedHuggingFaceEmbeddings,
|
|
SelfHostedHuggingFaceInstructEmbeddings,
|
|
)
|
|
|
|
|
|
def get_remote_instance() -> Any:
|
|
"""Get remote instance for testing."""
|
|
import runhouse as rh
|
|
|
|
gpu = rh.cluster(name="rh-a10x", instance_type="A100:1", use_spot=False)
|
|
gpu.install_packages(["pip:./"])
|
|
return gpu
|
|
|
|
|
|
def test_self_hosted_huggingface_embedding_documents() -> None:
|
|
"""Test self-hosted huggingface embeddings."""
|
|
documents = ["foo bar"]
|
|
gpu = get_remote_instance()
|
|
embedding = SelfHostedHuggingFaceEmbeddings(hardware=gpu)
|
|
output = embedding.embed_documents(documents)
|
|
assert len(output) == 1
|
|
assert len(output[0]) == 768
|
|
|
|
|
|
def test_self_hosted_huggingface_embedding_query() -> None:
|
|
"""Test self-hosted huggingface embeddings."""
|
|
document = "foo bar"
|
|
gpu = get_remote_instance()
|
|
embedding = SelfHostedHuggingFaceEmbeddings(hardware=gpu)
|
|
output = embedding.embed_query(document)
|
|
assert len(output) == 768
|
|
|
|
|
|
def test_self_hosted_huggingface_instructor_embedding_documents() -> None:
|
|
"""Test self-hosted huggingface instruct embeddings."""
|
|
documents = ["foo bar"]
|
|
gpu = get_remote_instance()
|
|
embedding = SelfHostedHuggingFaceInstructEmbeddings(hardware=gpu)
|
|
output = embedding.embed_documents(documents)
|
|
assert len(output) == 1
|
|
assert len(output[0]) == 768
|
|
|
|
|
|
def test_self_hosted_huggingface_instructor_embedding_query() -> None:
|
|
"""Test self-hosted huggingface instruct embeddings."""
|
|
query = "foo bar"
|
|
gpu = get_remote_instance()
|
|
embedding = SelfHostedHuggingFaceInstructEmbeddings(hardware=gpu)
|
|
output = embedding.embed_query(query)
|
|
assert len(output) == 768
|
|
|
|
|
|
def get_pipeline() -> Any:
|
|
"""Get pipeline for testing."""
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
|
|
|
model_id = "facebook/bart-base"
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
model = AutoModelForCausalLM.from_pretrained(model_id)
|
|
return pipeline("feature-extraction", model=model, tokenizer=tokenizer)
|
|
|
|
|
|
def inference_fn(pipeline: Any, prompt: str) -> Any:
|
|
"""Inference function for testing."""
|
|
# Return last hidden state of the model
|
|
if isinstance(prompt, list):
|
|
return [emb[0][-1] for emb in pipeline(prompt)]
|
|
return pipeline(prompt)[0][-1]
|
|
|
|
|
|
def test_self_hosted_embedding_documents() -> None:
|
|
"""Test self-hosted huggingface instruct embeddings."""
|
|
documents = ["foo bar"] * 2
|
|
gpu = get_remote_instance()
|
|
embedding = SelfHostedEmbeddings( # type: ignore[call-arg]
|
|
model_load_fn=get_pipeline, hardware=gpu, inference_fn=inference_fn
|
|
)
|
|
output = embedding.embed_documents(documents)
|
|
assert len(output) == 2
|
|
assert len(output[0]) == 50265
|
|
|
|
|
|
def test_self_hosted_embedding_query() -> None:
|
|
"""Test self-hosted custom embeddings."""
|
|
query = "foo bar"
|
|
gpu = get_remote_instance()
|
|
embedding = SelfHostedEmbeddings( # type: ignore[call-arg]
|
|
model_load_fn=get_pipeline, hardware=gpu, inference_fn=inference_fn
|
|
)
|
|
output = embedding.embed_query(query)
|
|
assert len(output) == 50265
|