mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-19 14:01:50 +00:00
```python """python scripts/update_mypy_ruff.py""" import glob import tomllib from pathlib import Path import toml import subprocess import re ROOT_DIR = Path(__file__).parents[1] def main(): for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True): print(path) with open(path, "rb") as f: pyproject = tomllib.load(f) try: pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = ( "^1.10" ) pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = ( "^0.5" ) except KeyError: continue with open(path, "w") as f: toml.dump(pyproject, f) cwd = "/".join(path.split("/")[:-1]) completed = subprocess.run( "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color", cwd=cwd, shell=True, capture_output=True, text=True, ) logs = completed.stdout.split("\n") to_ignore = {} for l in logs: if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l): path, line_no, error_type = re.match( "^(.*)\:(\d+)\: error:.*\[(.*)\]", l ).groups() if (path, line_no) in to_ignore: to_ignore[(path, line_no)].append(error_type) else: to_ignore[(path, line_no)] = [error_type] print(len(to_ignore)) for (error_path, line_no), error_types in to_ignore.items(): all_errors = ", ".join(error_types) full_path = f"{cwd}/{error_path}" try: with open(full_path, "r") as f: file_lines = f.readlines() except FileNotFoundError: continue file_lines[int(line_no) - 1] = ( file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n" ) with open(full_path, "w") as f: f.write("".join(file_lines)) subprocess.run( "poetry run ruff format .; poetry run ruff --select I --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) if __name__ == "__main__": main() ```
139 lines
3.9 KiB
Python
139 lines
3.9 KiB
Python
"""Test Fireworks AI API Wrapper."""
|
|
|
|
from typing import Generator
|
|
|
|
import pytest
|
|
from langchain_core.outputs import LLMResult
|
|
|
|
from langchain_community.llms.fireworks import Fireworks
|
|
|
|
|
|
@pytest.fixture
|
|
def llm() -> Fireworks:
|
|
return Fireworks(model_kwargs={"temperature": 0, "max_tokens": 512})
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_fireworks_call(llm: Fireworks) -> None:
|
|
"""Test valid call to fireworks."""
|
|
output = llm.invoke("How is the weather in New York today?")
|
|
assert isinstance(output, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_fireworks_model_param() -> None:
|
|
"""Tests model parameters for Fireworks"""
|
|
llm = Fireworks(model="foo")
|
|
assert llm.model == "foo"
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_fireworks_invoke(llm: Fireworks) -> None:
|
|
"""Tests completion with invoke"""
|
|
output = llm.invoke("How is the weather in New York today?", stop=[","])
|
|
assert isinstance(output, str)
|
|
assert output[-1] == ","
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
async def test_fireworks_ainvoke(llm: Fireworks) -> None:
|
|
"""Tests completion with invoke"""
|
|
output = await llm.ainvoke("How is the weather in New York today?", stop=[","])
|
|
assert isinstance(output, str)
|
|
assert output[-1] == ","
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_fireworks_batch(llm: Fireworks) -> None:
|
|
"""Tests completion with invoke"""
|
|
llm = Fireworks()
|
|
output = llm.batch(
|
|
[
|
|
"How is the weather in New York today?",
|
|
"How is the weather in New York today?",
|
|
],
|
|
stop=[","],
|
|
)
|
|
for token in output:
|
|
assert isinstance(token, str)
|
|
assert token[-1] == ","
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
async def test_fireworks_abatch(llm: Fireworks) -> None:
|
|
"""Tests completion with invoke"""
|
|
output = await llm.abatch(
|
|
[
|
|
"How is the weather in New York today?",
|
|
"How is the weather in New York today?",
|
|
],
|
|
stop=[","],
|
|
)
|
|
for token in output:
|
|
assert isinstance(token, str)
|
|
assert token[-1] == ","
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_fireworks_multiple_prompts(
|
|
llm: Fireworks,
|
|
) -> None:
|
|
"""Test completion with multiple prompts."""
|
|
output = llm.generate(["How is the weather in New York today?", "I'm pickle rick"])
|
|
assert isinstance(output, LLMResult)
|
|
assert isinstance(output.generations, list)
|
|
assert len(output.generations) == 2
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_fireworks_streaming(llm: Fireworks) -> None:
|
|
"""Test stream completion."""
|
|
generator = llm.stream("Who's the best quarterback in the NFL?")
|
|
assert isinstance(generator, Generator)
|
|
|
|
for token in generator:
|
|
assert isinstance(token, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_fireworks_streaming_stop_words(llm: Fireworks) -> None:
|
|
"""Test stream completion with stop words."""
|
|
generator = llm.stream("Who's the best quarterback in the NFL?", stop=[","])
|
|
assert isinstance(generator, Generator)
|
|
|
|
last_token = ""
|
|
for token in generator:
|
|
last_token = token
|
|
assert isinstance(token, str)
|
|
assert last_token[-1] == ","
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
async def test_fireworks_streaming_async(llm: Fireworks) -> None:
|
|
"""Test stream completion."""
|
|
|
|
last_token = ""
|
|
async for token in llm.astream(
|
|
"Who's the best quarterback in the NFL?", stop=[","]
|
|
):
|
|
last_token = token
|
|
assert isinstance(token, str)
|
|
assert last_token[-1] == ","
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
async def test_fireworks_async_agenerate(llm: Fireworks) -> None:
|
|
"""Test async."""
|
|
output = await llm.agenerate(["What is the best city to live in California?"])
|
|
assert isinstance(output, LLMResult)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
async def test_fireworks_multiple_prompts_async_agenerate(llm: Fireworks) -> None:
|
|
output = await llm.agenerate(
|
|
["How is the weather in New York today?", "I'm pickle rick"]
|
|
)
|
|
assert isinstance(output, LLMResult)
|
|
assert isinstance(output.generations, list)
|
|
assert len(output.generations) == 2
|