mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-19 05:51:16 +00:00
```python """python scripts/update_mypy_ruff.py""" import glob import tomllib from pathlib import Path import toml import subprocess import re ROOT_DIR = Path(__file__).parents[1] def main(): for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True): print(path) with open(path, "rb") as f: pyproject = tomllib.load(f) try: pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = ( "^1.10" ) pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = ( "^0.5" ) except KeyError: continue with open(path, "w") as f: toml.dump(pyproject, f) cwd = "/".join(path.split("/")[:-1]) completed = subprocess.run( "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color", cwd=cwd, shell=True, capture_output=True, text=True, ) logs = completed.stdout.split("\n") to_ignore = {} for l in logs: if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l): path, line_no, error_type = re.match( "^(.*)\:(\d+)\: error:.*\[(.*)\]", l ).groups() if (path, line_no) in to_ignore: to_ignore[(path, line_no)].append(error_type) else: to_ignore[(path, line_no)] = [error_type] print(len(to_ignore)) for (error_path, line_no), error_types in to_ignore.items(): all_errors = ", ".join(error_types) full_path = f"{cwd}/{error_path}" try: with open(full_path, "r") as f: file_lines = f.readlines() except FileNotFoundError: continue file_lines[int(line_no) - 1] = ( file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n" ) with open(full_path, "w") as f: f.write("".join(file_lines)) subprocess.run( "poetry run ruff format .; poetry run ruff --select I --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) if __name__ == "__main__": main() ```
50 lines
1.6 KiB
Python
50 lines
1.6 KiB
Python
"""Test GradientAI API wrapper.
|
|
|
|
In order to run this test, you need to have an GradientAI api key.
|
|
You can get it by registering for free at https://gradient.ai/.
|
|
|
|
You'll then need to set:
|
|
- `GRADIENT_ACCESS_TOKEN` environment variable to your api key.
|
|
- `GRADIENT_WORKSPACE_ID` environment variable to your workspace id.
|
|
- `GRADIENT_MODEL` environment variable to your workspace id.
|
|
"""
|
|
|
|
import os
|
|
|
|
from langchain_community.llms import GradientLLM
|
|
|
|
|
|
def test_gradient_acall() -> None:
|
|
"""Test simple call to gradient.ai."""
|
|
model = os.environ["GRADIENT_MODEL"]
|
|
gradient_access_token = os.environ["GRADIENT_ACCESS_TOKEN"]
|
|
gradient_workspace_id = os.environ["GRADIENT_WORKSPACE_ID"]
|
|
llm = GradientLLM(
|
|
model=model,
|
|
gradient_access_token=gradient_access_token,
|
|
gradient_workspace_id=gradient_workspace_id,
|
|
)
|
|
output = llm.invoke("Say hello:", temperature=0.2, max_tokens=250)
|
|
|
|
assert llm._llm_type == "gradient"
|
|
|
|
assert isinstance(output, str)
|
|
assert len(output)
|
|
|
|
|
|
async def test_gradientai_acall() -> None:
|
|
"""Test async call to gradient.ai."""
|
|
model = os.environ["GRADIENT_MODEL"]
|
|
gradient_access_token = os.environ["GRADIENT_ACCESS_TOKEN"]
|
|
gradient_workspace_id = os.environ["GRADIENT_WORKSPACE_ID"]
|
|
llm = GradientLLM(
|
|
model=model,
|
|
gradient_access_token=gradient_access_token,
|
|
gradient_workspace_id=gradient_workspace_id,
|
|
)
|
|
output = await llm.agenerate(["Say hello:"], temperature=0.2, max_tokens=250)
|
|
assert llm._llm_type == "gradient"
|
|
|
|
assert isinstance(output, str)
|
|
assert len(output)
|