mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-19 05:51:16 +00:00
This PR upgrades community to a recent version of mypy. It inserts type: ignore on all existing failures.
82 lines
3.1 KiB
Python
82 lines
3.1 KiB
Python
"""Test HuggingFace Endpoints."""
|
|
|
|
from pathlib import Path
|
|
|
|
import pytest
|
|
|
|
from langchain_community.llms.huggingface_endpoint import HuggingFaceEndpoint
|
|
from langchain_community.llms.loading import load_llm
|
|
from tests.integration_tests.llms.utils import assert_llm_equality
|
|
|
|
|
|
def test_huggingface_endpoint_call_error() -> None:
|
|
"""Test valid call to HuggingFace that errors."""
|
|
llm = HuggingFaceEndpoint(endpoint_url="", model_kwargs={"max_new_tokens": -1}) # type: ignore[call-arg]
|
|
with pytest.raises(ValueError):
|
|
llm.invoke("Say foo:")
|
|
|
|
|
|
def test_saving_loading_endpoint_llm(tmp_path: Path) -> None:
|
|
"""Test saving/loading an HuggingFaceHub LLM."""
|
|
llm = HuggingFaceEndpoint( # type: ignore[call-arg]
|
|
endpoint_url="", task="text-generation", model_kwargs={"max_new_tokens": 10}
|
|
)
|
|
llm.save(file_path=tmp_path / "hf.yaml")
|
|
loaded_llm = load_llm(tmp_path / "hf.yaml")
|
|
assert_llm_equality(llm, loaded_llm)
|
|
|
|
|
|
def test_huggingface_text_generation() -> None:
|
|
"""Test valid call to HuggingFace text generation model."""
|
|
llm = HuggingFaceEndpoint(repo_id="gpt2", model_kwargs={"max_new_tokens": 10}) # type: ignore[call-arg]
|
|
output = llm.invoke("Say foo:")
|
|
print(output) # noqa: T201
|
|
assert isinstance(output, str)
|
|
|
|
|
|
def test_huggingface_text2text_generation() -> None:
|
|
"""Test valid call to HuggingFace text2text model."""
|
|
llm = HuggingFaceEndpoint(repo_id="google/flan-t5-xl") # type: ignore[call-arg]
|
|
output = llm.invoke("The capital of New York is")
|
|
assert output == "Albany"
|
|
|
|
|
|
def test_huggingface_summarization() -> None:
|
|
"""Test valid call to HuggingFace summarization model."""
|
|
llm = HuggingFaceEndpoint(repo_id="facebook/bart-large-cnn") # type: ignore[call-arg]
|
|
output = llm.invoke("Say foo:")
|
|
assert isinstance(output, str)
|
|
|
|
|
|
def test_huggingface_call_error() -> None:
|
|
"""Test valid call to HuggingFace that errors."""
|
|
llm = HuggingFaceEndpoint(repo_id="gpt2", model_kwargs={"max_new_tokens": -1}) # type: ignore[call-arg]
|
|
with pytest.raises(ValueError):
|
|
llm.invoke("Say foo:")
|
|
|
|
|
|
def test_saving_loading_llm(tmp_path: Path) -> None:
|
|
"""Test saving/loading an HuggingFaceEndpoint LLM."""
|
|
llm = HuggingFaceEndpoint(repo_id="gpt2", model_kwargs={"max_new_tokens": 10}) # type: ignore[call-arg]
|
|
llm.save(file_path=tmp_path / "hf.yaml")
|
|
loaded_llm = load_llm(tmp_path / "hf.yaml")
|
|
assert_llm_equality(llm, loaded_llm)
|
|
|
|
|
|
def test_invocation_params_stop_sequences() -> None:
|
|
llm = HuggingFaceEndpoint() # type: ignore[call-arg]
|
|
assert llm._default_params["stop_sequences"] == []
|
|
|
|
runtime_stop = None
|
|
assert llm._invocation_params(runtime_stop)["stop_sequences"] == []
|
|
assert llm._default_params["stop_sequences"] == []
|
|
|
|
runtime_stop = ["stop"]
|
|
assert llm._invocation_params(runtime_stop)["stop_sequences"] == ["stop"]
|
|
assert llm._default_params["stop_sequences"] == []
|
|
|
|
llm = HuggingFaceEndpoint(stop_sequences=["."]) # type: ignore[call-arg]
|
|
runtime_stop = ["stop"]
|
|
assert llm._invocation_params(runtime_stop)["stop_sequences"] == [".", "stop"]
|
|
assert llm._default_params["stop_sequences"] == ["."]
|