mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-02 21:23:32 +00:00
```python """python scripts/update_mypy_ruff.py""" import glob import tomllib from pathlib import Path import toml import subprocess import re ROOT_DIR = Path(__file__).parents[1] def main(): for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True): print(path) with open(path, "rb") as f: pyproject = tomllib.load(f) try: pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = ( "^1.10" ) pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = ( "^0.5" ) except KeyError: continue with open(path, "w") as f: toml.dump(pyproject, f) cwd = "/".join(path.split("/")[:-1]) completed = subprocess.run( "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color", cwd=cwd, shell=True, capture_output=True, text=True, ) logs = completed.stdout.split("\n") to_ignore = {} for l in logs: if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l): path, line_no, error_type = re.match( "^(.*)\:(\d+)\: error:.*\[(.*)\]", l ).groups() if (path, line_no) in to_ignore: to_ignore[(path, line_no)].append(error_type) else: to_ignore[(path, line_no)] = [error_type] print(len(to_ignore)) for (error_path, line_no), error_types in to_ignore.items(): all_errors = ", ".join(error_types) full_path = f"{cwd}/{error_path}" try: with open(full_path, "r") as f: file_lines = f.readlines() except FileNotFoundError: continue file_lines[int(line_no) - 1] = ( file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n" ) with open(full_path, "w") as f: f.write("".join(file_lines)) subprocess.run( "poetry run ruff format .; poetry run ruff --select I --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) if __name__ == "__main__": main() ```
63 lines
1.5 KiB
Python
63 lines
1.5 KiB
Python
"""Test Vertex AI embeddings API wrapper."""
|
|
|
|
from langchain_community.embeddings import VertexAIEmbeddings
|
|
|
|
|
|
def test_split_by_punctuation() -> None:
|
|
parts = VertexAIEmbeddings._split_by_punctuation(
|
|
"Hello, my friend!\nHow are you?\nI have 2 news:\n\n\t- Good,\n\t- Bad."
|
|
)
|
|
assert parts == [
|
|
"Hello",
|
|
",",
|
|
" ",
|
|
"my",
|
|
" ",
|
|
"friend",
|
|
"!",
|
|
"\n",
|
|
"How",
|
|
" ",
|
|
"are",
|
|
" ",
|
|
"you",
|
|
"?",
|
|
"\n",
|
|
"I",
|
|
" ",
|
|
"have",
|
|
" ",
|
|
"2",
|
|
" ",
|
|
"news",
|
|
":",
|
|
"\n",
|
|
"\n",
|
|
"\t",
|
|
"-",
|
|
" ",
|
|
"Good",
|
|
",",
|
|
"\n",
|
|
"\t",
|
|
"-",
|
|
" ",
|
|
"Bad",
|
|
".",
|
|
]
|
|
|
|
|
|
def test_batching() -> None:
|
|
long_text = "foo " * 500 # 1000 words, 2000 tokens
|
|
long_texts = [long_text for _ in range(0, 250)]
|
|
documents251 = ["foo bar" for _ in range(0, 251)]
|
|
five_elem = VertexAIEmbeddings._prepare_batches(long_texts, 5)
|
|
default250_elem = VertexAIEmbeddings._prepare_batches(long_texts, 250)
|
|
batches251 = VertexAIEmbeddings._prepare_batches(documents251, 250)
|
|
assert len(five_elem) == 50 # 250/5 items
|
|
assert len(five_elem[0]) == 5 # 5 items per batch
|
|
assert len(default250_elem[0]) == 10 # Should not be more than 20K tokens
|
|
assert len(default250_elem) == 25
|
|
assert len(batches251[0]) == 250
|
|
assert len(batches251[1]) == 1
|