Files
langchain/libs/community/langchain_community/embeddings/gpt4all.py
Harrison Chase 8516a03a02 langchain-community[major]: Upgrade community to pydantic 2 (#26011)
This PR upgrades langchain-community to pydantic 2.


* Most of this PR was auto-generated using code mods with gritql
(https://github.com/eyurtsev/migrate-pydantic/tree/main)
* Subsequently, some code was fixed manually due to accommodate
differences between pydantic 1 and 2

Breaking Changes:

- Use TEXTEMBED_API_KEY and TEXTEMBEB_API_URL for env variables for text
embed integrations:
cbea780492

Other changes:

- Added pydantic_settings as a required dependency for community. This
may be removed if we have enough time to convert the dependency into an
optional one.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-09-05 14:07:10 -04:00

75 lines
2.2 KiB
Python

from typing import Any, Dict, List, Optional
from langchain_core.embeddings import Embeddings
from pydantic import BaseModel, model_validator
class GPT4AllEmbeddings(BaseModel, Embeddings):
"""GPT4All embedding models.
To use, you should have the gpt4all python package installed
Example:
.. code-block:: python
from langchain_community.embeddings import GPT4AllEmbeddings
model_name = "all-MiniLM-L6-v2.gguf2.f16.gguf"
gpt4all_kwargs = {'allow_download': 'True'}
embeddings = GPT4AllEmbeddings(
model_name=model_name,
gpt4all_kwargs=gpt4all_kwargs
)
"""
model_name: Optional[str] = None
n_threads: Optional[int] = None
device: Optional[str] = "cpu"
gpt4all_kwargs: Optional[dict] = {}
client: Any #: :meta private:
@model_validator(mode="before")
@classmethod
def validate_environment(cls, values: Dict) -> Any:
"""Validate that GPT4All library is installed."""
try:
from gpt4all import Embed4All
values["client"] = Embed4All(
model_name=values.get("model_name"),
n_threads=values.get("n_threads"),
device=values.get("device"),
**(values.get("gpt4all_kwargs") or {}),
)
except ImportError:
raise ImportError(
"Could not import gpt4all library. "
"Please install the gpt4all library to "
"use this embedding model: pip install gpt4all"
)
return values
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Embed a list of documents using GPT4All.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
embeddings = [self.client.embed(text) for text in texts]
return [list(map(float, e)) for e in embeddings]
def embed_query(self, text: str) -> List[float]:
"""Embed a query using GPT4All.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
return self.embed_documents([text])[0]