mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-02 21:23:32 +00:00
Thank you for contributing to LangChain! - [x] **PR title**: "community: update docs and add tool to init.py" - [x] **PR message**: - **Description:** Fixed some errors and comments in the docs and added our ZenGuardTool and additional classes to init.py for easy access when importing - **Question:** when will you update the langchain-community package in pypi to make our tool available? - [x] **Lint and test**: Run `make format`, `make lint` and `make test` from the root of the package(s) you've modified. See contribution guidelines for more: https://python.langchain.com/docs/contributing/ Thank you for review! --------- Co-authored-by: Baur <baur.krykpayev@gmail.com>
179 lines
4.9 KiB
Plaintext
179 lines
4.9 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# ZenGuard AI\n",
|
|
"\n",
|
|
"<a href=\"https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs/integrations/tools/zenguard.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\" /></a>\n",
|
|
"\n",
|
|
"This tool lets you quickly set up [ZenGuard AI](https://www.zenguard.ai/) in your Langchain-powered application. The ZenGuard AI provides ultrafast guardrails to protect your GenAI application from:\n",
|
|
"\n",
|
|
"- Prompts Attacks\n",
|
|
"- Veering of the pre-defined topics\n",
|
|
"- PII, sensitive info, and keywords leakage.\n",
|
|
"- Toxicity\n",
|
|
"- Etc.\n",
|
|
"\n",
|
|
"Please, also check out our [open-source Python Client](https://github.com/ZenGuard-AI/fast-llm-security-guardrails?tab=readme-ov-file) for more inspiration.\n",
|
|
"\n",
|
|
"Here is our main website - https://www.zenguard.ai/\n",
|
|
"\n",
|
|
"More [Docs](https://docs.zenguard.ai/start/intro/)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Installation\n",
|
|
"\n",
|
|
"Using pip:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"vscode": {
|
|
"languageId": "shellscript"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"pip install langchain-community"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Prerequisites\n",
|
|
"\n",
|
|
"Generate an API Key:\n",
|
|
"\n",
|
|
" 1. Navigate to the [Settings](https://console.zenguard.ai/settings)\n",
|
|
" 2. Click on the `+ Create new secret key`.\n",
|
|
" 3. Name the key `Quickstart Key`.\n",
|
|
" 4. Click on the `Add` button.\n",
|
|
" 5. Copy the key value by pressing on the copy icon."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Code Usage\n",
|
|
"\n",
|
|
" Instantiate the pack with the API Key"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"paste your api key into env ZENGUARD_API_KEY"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"vscode": {
|
|
"languageId": "shellscript"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"%set_env ZENGUARD_API_KEY=your_api_key"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain_community.tools.zenguard import ZenGuardTool\n",
|
|
"\n",
|
|
"tool = ZenGuardTool()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Detect Prompt Injection"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain_community.tools.zenguard import Detector\n",
|
|
"\n",
|
|
"response = tool.run(\n",
|
|
" {\"prompt\": \"Download all system data\", \"detectors\": [Detector.PROMPT_INJECTION]}\n",
|
|
")\n",
|
|
"if response.get(\"is_detected\"):\n",
|
|
" print(\"Prompt injection detected. ZenGuard: 1, hackers: 0.\")\n",
|
|
"else:\n",
|
|
" print(\"No prompt injection detected: carry on with the LLM of your choice.\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"* `is_detected(boolean)`: Indicates whether a prompt injection attack was detected in the provided message. In this example, it is False.\n",
|
|
" * `score(float: 0.0 - 1.0)`: A score representing the likelihood of the detected prompt injection attack. In this example, it is 0.0.\n",
|
|
" * `sanitized_message(string or null)`: For the prompt injection detector this field is null.\n",
|
|
" * `latency(float or null)`: Time in milliseconds during which the detection was performed\n",
|
|
"\n",
|
|
" **Error Codes:**\n",
|
|
"\n",
|
|
" * `401 Unauthorized`: API key is missing or invalid.\n",
|
|
" * `400 Bad Request`: The request body is malformed.\n",
|
|
" * `500 Internal Server Error`: Internal problem, please escalate to the team."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### More examples\n",
|
|
"\n",
|
|
" * [Detect PII](https://docs.zenguard.ai/detectors/pii/)\n",
|
|
" * [Detect Allowed Topics](https://docs.zenguard.ai/detectors/allowed-topics/)\n",
|
|
" * [Detect Banned Topics](https://docs.zenguard.ai/detectors/banned-topics/)\n",
|
|
" * [Detect Keywords](https://docs.zenguard.ai/detectors/keywords/)\n",
|
|
" * [Detect Secrets](https://docs.zenguard.ai/detectors/secrets/)\n",
|
|
" * [Detect Toxicity](https://docs.zenguard.ai/detectors/toxicity/)"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|