langchain/libs/community/tests/unit_tests/chat_models/test_anthropic.py
Bagatur a0c2281540
infra: update mypy 1.10, ruff 0.5 (#23721)
```python
"""python scripts/update_mypy_ruff.py"""
import glob
import tomllib
from pathlib import Path

import toml
import subprocess
import re

ROOT_DIR = Path(__file__).parents[1]


def main():
    for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True):
        print(path)
        with open(path, "rb") as f:
            pyproject = tomllib.load(f)
        try:
            pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = (
                "^1.10"
            )
            pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = (
                "^0.5"
            )
        except KeyError:
            continue
        with open(path, "w") as f:
            toml.dump(pyproject, f)
        cwd = "/".join(path.split("/")[:-1])
        completed = subprocess.run(
            "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )
        logs = completed.stdout.split("\n")

        to_ignore = {}
        for l in logs:
            if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l):
                path, line_no, error_type = re.match(
                    "^(.*)\:(\d+)\: error:.*\[(.*)\]", l
                ).groups()
                if (path, line_no) in to_ignore:
                    to_ignore[(path, line_no)].append(error_type)
                else:
                    to_ignore[(path, line_no)] = [error_type]
        print(len(to_ignore))
        for (error_path, line_no), error_types in to_ignore.items():
            all_errors = ", ".join(error_types)
            full_path = f"{cwd}/{error_path}"
            try:
                with open(full_path, "r") as f:
                    file_lines = f.readlines()
            except FileNotFoundError:
                continue
            file_lines[int(line_no) - 1] = (
                file_lines[int(line_no) - 1][:-1] + f"  # type: ignore[{all_errors}]\n"
            )
            with open(full_path, "w") as f:
                f.write("".join(file_lines))

        subprocess.run(
            "poetry run ruff format .; poetry run ruff --select I --fix .",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )


if __name__ == "__main__":
    main()

```
2024-07-03 10:33:27 -07:00

77 lines
2.4 KiB
Python

"""Test Anthropic Chat API wrapper."""
import os
from typing import List
import pytest
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage, SystemMessage
from langchain_community.chat_models import ChatAnthropic
from langchain_community.chat_models.anthropic import (
convert_messages_to_prompt_anthropic,
)
os.environ["ANTHROPIC_API_KEY"] = "foo"
@pytest.mark.requires("anthropic")
def test_anthropic_model_name_param() -> None:
llm = ChatAnthropic(model_name="foo")
assert llm.model == "foo"
@pytest.mark.requires("anthropic")
def test_anthropic_model_param() -> None:
llm = ChatAnthropic(model="foo") # type: ignore[call-arg]
assert llm.model == "foo"
@pytest.mark.requires("anthropic")
def test_anthropic_model_kwargs() -> None:
llm = ChatAnthropic(model_kwargs={"foo": "bar"})
assert llm.model_kwargs == {"foo": "bar"}
@pytest.mark.requires("anthropic")
def test_anthropic_invalid_model_kwargs() -> None:
with pytest.raises(ValueError):
ChatAnthropic(model_kwargs={"max_tokens_to_sample": 5})
@pytest.mark.requires("anthropic")
def test_anthropic_incorrect_field() -> None:
with pytest.warns(match="not default parameter"):
llm = ChatAnthropic(foo="bar") # type: ignore[call-arg]
assert llm.model_kwargs == {"foo": "bar"}
@pytest.mark.requires("anthropic")
def test_anthropic_initialization() -> None:
"""Test anthropic initialization."""
# Verify that chat anthropic can be initialized using a secret key provided
# as a parameter rather than an environment variable.
ChatAnthropic(model="test", anthropic_api_key="test") # type: ignore[arg-type, call-arg]
@pytest.mark.parametrize(
("messages", "expected"),
[
([HumanMessage(content="Hello")], "\n\nHuman: Hello\n\nAssistant:"),
(
[HumanMessage(content="Hello"), AIMessage(content="Answer:")],
"\n\nHuman: Hello\n\nAssistant: Answer:",
),
(
[
SystemMessage(content="You're an assistant"),
HumanMessage(content="Hello"),
AIMessage(content="Answer:"),
],
"You're an assistant\n\nHuman: Hello\n\nAssistant: Answer:",
),
],
)
def test_formatting(messages: List[BaseMessage], expected: str) -> None:
result = convert_messages_to_prompt_anthropic(messages)
assert result == expected