mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-05 07:08:03 +00:00
```python """python scripts/update_mypy_ruff.py""" import glob import tomllib from pathlib import Path import toml import subprocess import re ROOT_DIR = Path(__file__).parents[1] def main(): for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True): print(path) with open(path, "rb") as f: pyproject = tomllib.load(f) try: pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = ( "^1.10" ) pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = ( "^0.5" ) except KeyError: continue with open(path, "w") as f: toml.dump(pyproject, f) cwd = "/".join(path.split("/")[:-1]) completed = subprocess.run( "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color", cwd=cwd, shell=True, capture_output=True, text=True, ) logs = completed.stdout.split("\n") to_ignore = {} for l in logs: if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l): path, line_no, error_type = re.match( "^(.*)\:(\d+)\: error:.*\[(.*)\]", l ).groups() if (path, line_no) in to_ignore: to_ignore[(path, line_no)].append(error_type) else: to_ignore[(path, line_no)] = [error_type] print(len(to_ignore)) for (error_path, line_no), error_types in to_ignore.items(): all_errors = ", ".join(error_types) full_path = f"{cwd}/{error_path}" try: with open(full_path, "r") as f: file_lines = f.readlines() except FileNotFoundError: continue file_lines[int(line_no) - 1] = ( file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n" ) with open(full_path, "w") as f: f.write("".join(file_lines)) subprocess.run( "poetry run ruff format .; poetry run ruff --select I --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) if __name__ == "__main__": main() ```
77 lines
2.4 KiB
Python
77 lines
2.4 KiB
Python
"""Test Anthropic Chat API wrapper."""
|
|
|
|
import os
|
|
from typing import List
|
|
|
|
import pytest
|
|
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage, SystemMessage
|
|
|
|
from langchain_community.chat_models import ChatAnthropic
|
|
from langchain_community.chat_models.anthropic import (
|
|
convert_messages_to_prompt_anthropic,
|
|
)
|
|
|
|
os.environ["ANTHROPIC_API_KEY"] = "foo"
|
|
|
|
|
|
@pytest.mark.requires("anthropic")
|
|
def test_anthropic_model_name_param() -> None:
|
|
llm = ChatAnthropic(model_name="foo")
|
|
assert llm.model == "foo"
|
|
|
|
|
|
@pytest.mark.requires("anthropic")
|
|
def test_anthropic_model_param() -> None:
|
|
llm = ChatAnthropic(model="foo") # type: ignore[call-arg]
|
|
assert llm.model == "foo"
|
|
|
|
|
|
@pytest.mark.requires("anthropic")
|
|
def test_anthropic_model_kwargs() -> None:
|
|
llm = ChatAnthropic(model_kwargs={"foo": "bar"})
|
|
assert llm.model_kwargs == {"foo": "bar"}
|
|
|
|
|
|
@pytest.mark.requires("anthropic")
|
|
def test_anthropic_invalid_model_kwargs() -> None:
|
|
with pytest.raises(ValueError):
|
|
ChatAnthropic(model_kwargs={"max_tokens_to_sample": 5})
|
|
|
|
|
|
@pytest.mark.requires("anthropic")
|
|
def test_anthropic_incorrect_field() -> None:
|
|
with pytest.warns(match="not default parameter"):
|
|
llm = ChatAnthropic(foo="bar") # type: ignore[call-arg]
|
|
assert llm.model_kwargs == {"foo": "bar"}
|
|
|
|
|
|
@pytest.mark.requires("anthropic")
|
|
def test_anthropic_initialization() -> None:
|
|
"""Test anthropic initialization."""
|
|
# Verify that chat anthropic can be initialized using a secret key provided
|
|
# as a parameter rather than an environment variable.
|
|
ChatAnthropic(model="test", anthropic_api_key="test") # type: ignore[arg-type, call-arg]
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
("messages", "expected"),
|
|
[
|
|
([HumanMessage(content="Hello")], "\n\nHuman: Hello\n\nAssistant:"),
|
|
(
|
|
[HumanMessage(content="Hello"), AIMessage(content="Answer:")],
|
|
"\n\nHuman: Hello\n\nAssistant: Answer:",
|
|
),
|
|
(
|
|
[
|
|
SystemMessage(content="You're an assistant"),
|
|
HumanMessage(content="Hello"),
|
|
AIMessage(content="Answer:"),
|
|
],
|
|
"You're an assistant\n\nHuman: Hello\n\nAssistant: Answer:",
|
|
),
|
|
],
|
|
)
|
|
def test_formatting(messages: List[BaseMessage], expected: str) -> None:
|
|
result = convert_messages_to_prompt_anthropic(messages)
|
|
assert result == expected
|