langchain/libs/community/tests/unit_tests/chat_models/test_bedrock.py
Bagatur a0c2281540
infra: update mypy 1.10, ruff 0.5 (#23721)
```python
"""python scripts/update_mypy_ruff.py"""
import glob
import tomllib
from pathlib import Path

import toml
import subprocess
import re

ROOT_DIR = Path(__file__).parents[1]


def main():
    for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True):
        print(path)
        with open(path, "rb") as f:
            pyproject = tomllib.load(f)
        try:
            pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = (
                "^1.10"
            )
            pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = (
                "^0.5"
            )
        except KeyError:
            continue
        with open(path, "w") as f:
            toml.dump(pyproject, f)
        cwd = "/".join(path.split("/")[:-1])
        completed = subprocess.run(
            "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )
        logs = completed.stdout.split("\n")

        to_ignore = {}
        for l in logs:
            if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l):
                path, line_no, error_type = re.match(
                    "^(.*)\:(\d+)\: error:.*\[(.*)\]", l
                ).groups()
                if (path, line_no) in to_ignore:
                    to_ignore[(path, line_no)].append(error_type)
                else:
                    to_ignore[(path, line_no)] = [error_type]
        print(len(to_ignore))
        for (error_path, line_no), error_types in to_ignore.items():
            all_errors = ", ".join(error_types)
            full_path = f"{cwd}/{error_path}"
            try:
                with open(full_path, "r") as f:
                    file_lines = f.readlines()
            except FileNotFoundError:
                continue
            file_lines[int(line_no) - 1] = (
                file_lines[int(line_no) - 1][:-1] + f"  # type: ignore[{all_errors}]\n"
            )
            with open(full_path, "w") as f:
                f.write("".join(file_lines))

        subprocess.run(
            "poetry run ruff format .; poetry run ruff --select I --fix .",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )


if __name__ == "__main__":
    main()

```
2024-07-03 10:33:27 -07:00

91 lines
2.8 KiB
Python

"""Test Anthropic Chat API wrapper."""
from typing import List
from unittest.mock import MagicMock
import pytest
from langchain_core.messages import (
AIMessage,
BaseMessage,
HumanMessage,
SystemMessage,
)
from langchain_community.chat_models import BedrockChat
from langchain_community.chat_models.meta import convert_messages_to_prompt_llama
@pytest.mark.parametrize(
("messages", "expected"),
[
([HumanMessage(content="Hello")], "[INST] Hello [/INST]"),
(
[HumanMessage(content="Hello"), AIMessage(content="Answer:")],
"[INST] Hello [/INST]\nAnswer:",
),
(
[
SystemMessage(content="You're an assistant"),
HumanMessage(content="Hello"),
AIMessage(content="Answer:"),
],
"<<SYS>> You're an assistant <</SYS>>\n[INST] Hello [/INST]\nAnswer:",
),
],
)
def test_formatting(messages: List[BaseMessage], expected: str) -> None:
result = convert_messages_to_prompt_llama(messages)
assert result == expected
@pytest.mark.parametrize(
"model_id",
["anthropic.claude-v2", "amazon.titan-text-express-v1"],
)
def test_different_models_bedrock(model_id: str) -> None:
provider = model_id.split(".")[0]
client = MagicMock()
respbody = MagicMock()
if provider == "anthropic":
respbody.read.return_value = MagicMock(
decode=MagicMock(return_value=b'{"completion":"Hi back"}'),
)
client.invoke_model.return_value = {"body": respbody}
elif provider == "amazon":
respbody.read.return_value = '{"results": [{"outputText": "Hi back"}]}'
client.invoke_model.return_value = {"body": respbody}
model = BedrockChat(model_id=model_id, client=client)
# should not throw an error
model.invoke("hello there")
def test_bedrock_combine_llm_output() -> None:
model_id = "anthropic.claude-3-haiku-20240307-v1:0"
client = MagicMock()
llm_outputs = [
{
"model_id": "anthropic.claude-3-haiku-20240307-v1:0",
"usage": {
"completion_tokens": 1,
"prompt_tokens": 2,
"total_tokens": 3,
},
},
{
"model_id": "anthropic.claude-3-haiku-20240307-v1:0",
"usage": {
"completion_tokens": 1,
"prompt_tokens": 2,
"total_tokens": 3,
},
},
]
model = BedrockChat(model_id=model_id, client=client)
final_output = model._combine_llm_outputs(llm_outputs) # type: ignore[arg-type]
assert final_output["model_id"] == model_id
assert final_output["usage"]["completion_tokens"] == 2
assert final_output["usage"]["prompt_tokens"] == 4
assert final_output["usage"]["total_tokens"] == 6