langchain/libs/community/tests/unit_tests/chat_models/test_kinetica.py
Bagatur a0c2281540
infra: update mypy 1.10, ruff 0.5 (#23721)
```python
"""python scripts/update_mypy_ruff.py"""
import glob
import tomllib
from pathlib import Path

import toml
import subprocess
import re

ROOT_DIR = Path(__file__).parents[1]


def main():
    for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True):
        print(path)
        with open(path, "rb") as f:
            pyproject = tomllib.load(f)
        try:
            pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = (
                "^1.10"
            )
            pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = (
                "^0.5"
            )
        except KeyError:
            continue
        with open(path, "w") as f:
            toml.dump(pyproject, f)
        cwd = "/".join(path.split("/")[:-1])
        completed = subprocess.run(
            "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )
        logs = completed.stdout.split("\n")

        to_ignore = {}
        for l in logs:
            if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l):
                path, line_no, error_type = re.match(
                    "^(.*)\:(\d+)\: error:.*\[(.*)\]", l
                ).groups()
                if (path, line_no) in to_ignore:
                    to_ignore[(path, line_no)].append(error_type)
                else:
                    to_ignore[(path, line_no)] = [error_type]
        print(len(to_ignore))
        for (error_path, line_no), error_types in to_ignore.items():
            all_errors = ", ".join(error_types)
            full_path = f"{cwd}/{error_path}"
            try:
                with open(full_path, "r") as f:
                    file_lines = f.readlines()
            except FileNotFoundError:
                continue
            file_lines[int(line_no) - 1] = (
                file_lines[int(line_no) - 1][:-1] + f"  # type: ignore[{all_errors}]\n"
            )
            with open(full_path, "w") as f:
                f.write("".join(file_lines))

        subprocess.run(
            "poetry run ruff format .; poetry run ruff --select I --fix .",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )


if __name__ == "__main__":
    main()

```
2024-07-03 10:33:27 -07:00

67 lines
2.0 KiB
Python

"""Test `Kinetica` chat models"""
import logging
from typing import Any
from langchain_core.messages import AIMessage
from langchain_community.chat_models.kinetica import ChatKinetica, KineticaUtil
LOG = logging.getLogger(__name__)
class TestChatKinetica:
test_ctx_json = """
{
"payload":{
"context":[
{
"table":"demo.test_profiles",
"columns":[
"username VARCHAR (32) NOT NULL",
"name VARCHAR (32) NOT NULL",
"sex VARCHAR (1) NOT NULL",
"address VARCHAR (64) NOT NULL",
"mail VARCHAR (32) NOT NULL",
"birthdate TIMESTAMP NOT NULL"
],
"description":"Contains user profiles.",
"rules":[
]
},
{
"samples":{
"How many male users are there?":
"select count(1) as num_users from demo.test_profiles where sex = ''M'';"
}
}
]
}
}
"""
def test_convert_messages(self, monkeypatch: Any) -> None:
"""Test convert messages from context."""
def patch_kdbc() -> None:
return None
monkeypatch.setattr(KineticaUtil, "create_kdbc", patch_kdbc)
def patch_execute_sql(*args: Any, **kwargs: Any) -> dict:
return dict(Prompt=self.test_ctx_json)
monkeypatch.setattr(ChatKinetica, "_execute_sql", patch_execute_sql)
kinetica_llm = ChatKinetica() # type: ignore[call-arg]
test_messages = kinetica_llm.load_messages_from_context("test")
LOG.info(f"test_messages: {test_messages}")
ai_message = test_messages[-1]
assert isinstance(ai_message, AIMessage)
assert (
ai_message.content
== "select count(1) as num_users from demo.test_profiles where sex = 'M';"
)