mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-04 22:58:42 +00:00
```python """python scripts/update_mypy_ruff.py""" import glob import tomllib from pathlib import Path import toml import subprocess import re ROOT_DIR = Path(__file__).parents[1] def main(): for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True): print(path) with open(path, "rb") as f: pyproject = tomllib.load(f) try: pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = ( "^1.10" ) pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = ( "^0.5" ) except KeyError: continue with open(path, "w") as f: toml.dump(pyproject, f) cwd = "/".join(path.split("/")[:-1]) completed = subprocess.run( "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color", cwd=cwd, shell=True, capture_output=True, text=True, ) logs = completed.stdout.split("\n") to_ignore = {} for l in logs: if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l): path, line_no, error_type = re.match( "^(.*)\:(\d+)\: error:.*\[(.*)\]", l ).groups() if (path, line_no) in to_ignore: to_ignore[(path, line_no)].append(error_type) else: to_ignore[(path, line_no)] = [error_type] print(len(to_ignore)) for (error_path, line_no), error_types in to_ignore.items(): all_errors = ", ".join(error_types) full_path = f"{cwd}/{error_path}" try: with open(full_path, "r") as f: file_lines = f.readlines() except FileNotFoundError: continue file_lines[int(line_no) - 1] = ( file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n" ) with open(full_path, "w") as f: f.write("".join(file_lines)) subprocess.run( "poetry run ruff format .; poetry run ruff --select I --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) if __name__ == "__main__": main() ```
67 lines
2.0 KiB
Python
67 lines
2.0 KiB
Python
"""Test `Kinetica` chat models"""
|
|
|
|
import logging
|
|
from typing import Any
|
|
|
|
from langchain_core.messages import AIMessage
|
|
|
|
from langchain_community.chat_models.kinetica import ChatKinetica, KineticaUtil
|
|
|
|
LOG = logging.getLogger(__name__)
|
|
|
|
|
|
class TestChatKinetica:
|
|
test_ctx_json = """
|
|
{
|
|
"payload":{
|
|
"context":[
|
|
{
|
|
"table":"demo.test_profiles",
|
|
"columns":[
|
|
"username VARCHAR (32) NOT NULL",
|
|
"name VARCHAR (32) NOT NULL",
|
|
"sex VARCHAR (1) NOT NULL",
|
|
"address VARCHAR (64) NOT NULL",
|
|
"mail VARCHAR (32) NOT NULL",
|
|
"birthdate TIMESTAMP NOT NULL"
|
|
],
|
|
"description":"Contains user profiles.",
|
|
"rules":[
|
|
|
|
]
|
|
},
|
|
{
|
|
"samples":{
|
|
"How many male users are there?":
|
|
"select count(1) as num_users from demo.test_profiles where sex = ''M'';"
|
|
}
|
|
}
|
|
]
|
|
}
|
|
}
|
|
"""
|
|
|
|
def test_convert_messages(self, monkeypatch: Any) -> None:
|
|
"""Test convert messages from context."""
|
|
|
|
def patch_kdbc() -> None:
|
|
return None
|
|
|
|
monkeypatch.setattr(KineticaUtil, "create_kdbc", patch_kdbc)
|
|
|
|
def patch_execute_sql(*args: Any, **kwargs: Any) -> dict:
|
|
return dict(Prompt=self.test_ctx_json)
|
|
|
|
monkeypatch.setattr(ChatKinetica, "_execute_sql", patch_execute_sql)
|
|
|
|
kinetica_llm = ChatKinetica() # type: ignore[call-arg]
|
|
|
|
test_messages = kinetica_llm.load_messages_from_context("test")
|
|
LOG.info(f"test_messages: {test_messages}")
|
|
ai_message = test_messages[-1]
|
|
assert isinstance(ai_message, AIMessage)
|
|
assert (
|
|
ai_message.content
|
|
== "select count(1) as num_users from demo.test_profiles where sex = 'M';"
|
|
)
|