mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-11 10:06:05 +00:00
```python """python scripts/update_mypy_ruff.py""" import glob import tomllib from pathlib import Path import toml import subprocess import re ROOT_DIR = Path(__file__).parents[1] def main(): for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True): print(path) with open(path, "rb") as f: pyproject = tomllib.load(f) try: pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = ( "^1.10" ) pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = ( "^0.5" ) except KeyError: continue with open(path, "w") as f: toml.dump(pyproject, f) cwd = "/".join(path.split("/")[:-1]) completed = subprocess.run( "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color", cwd=cwd, shell=True, capture_output=True, text=True, ) logs = completed.stdout.split("\n") to_ignore = {} for l in logs: if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l): path, line_no, error_type = re.match( "^(.*)\:(\d+)\: error:.*\[(.*)\]", l ).groups() if (path, line_no) in to_ignore: to_ignore[(path, line_no)].append(error_type) else: to_ignore[(path, line_no)] = [error_type] print(len(to_ignore)) for (error_path, line_no), error_types in to_ignore.items(): all_errors = ", ".join(error_types) full_path = f"{cwd}/{error_path}" try: with open(full_path, "r") as f: file_lines = f.readlines() except FileNotFoundError: continue file_lines[int(line_no) - 1] = ( file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n" ) with open(full_path, "w") as f: f.write("".join(file_lines)) subprocess.run( "poetry run ruff format .; poetry run ruff --select I --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) if __name__ == "__main__": main() ```
99 lines
3.0 KiB
Python
99 lines
3.0 KiB
Python
"""Test Momento cache functionality.
|
|
|
|
To run tests, set the environment variable MOMENTO_AUTH_TOKEN to a valid
|
|
Momento auth token. This can be obtained by signing up for a free
|
|
Momento account at https://gomomento.com/.
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
import uuid
|
|
from datetime import timedelta
|
|
from typing import Iterator
|
|
|
|
import pytest
|
|
from langchain.globals import set_llm_cache
|
|
from langchain_core.outputs import Generation, LLMResult
|
|
|
|
from langchain_community.cache import MomentoCache
|
|
from tests.unit_tests.llms.fake_llm import FakeLLM
|
|
|
|
|
|
def random_string() -> str:
|
|
return str(uuid.uuid4())
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def momento_cache() -> Iterator[MomentoCache]:
|
|
from momento import CacheClient, Configurations, CredentialProvider
|
|
|
|
cache_name = f"langchain-test-cache-{random_string()}"
|
|
client = CacheClient(
|
|
Configurations.Laptop.v1(),
|
|
CredentialProvider.from_environment_variable("MOMENTO_API_KEY"),
|
|
default_ttl=timedelta(seconds=30),
|
|
)
|
|
try:
|
|
llm_cache = MomentoCache(client, cache_name)
|
|
set_llm_cache(llm_cache)
|
|
yield llm_cache
|
|
finally:
|
|
client.delete_cache(cache_name)
|
|
|
|
|
|
def test_invalid_ttl() -> None:
|
|
from momento import CacheClient, Configurations, CredentialProvider
|
|
|
|
client = CacheClient(
|
|
Configurations.Laptop.v1(),
|
|
CredentialProvider.from_environment_variable("MOMENTO_API_KEY"),
|
|
default_ttl=timedelta(seconds=30),
|
|
)
|
|
with pytest.raises(ValueError):
|
|
MomentoCache(client, cache_name=random_string(), ttl=timedelta(seconds=-1))
|
|
|
|
|
|
def test_momento_cache_miss(momento_cache: MomentoCache) -> None:
|
|
llm = FakeLLM()
|
|
stub_llm_output = LLMResult(generations=[[Generation(text="foo")]])
|
|
assert llm.generate([random_string()]) == stub_llm_output
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"prompts, generations",
|
|
[
|
|
# Single prompt, single generation
|
|
([random_string()], [[random_string()]]),
|
|
# Single prompt, multiple generations
|
|
([random_string()], [[random_string(), random_string()]]),
|
|
# Single prompt, multiple generations
|
|
([random_string()], [[random_string(), random_string(), random_string()]]),
|
|
# Multiple prompts, multiple generations
|
|
(
|
|
[random_string(), random_string()],
|
|
[[random_string()], [random_string(), random_string()]],
|
|
),
|
|
],
|
|
)
|
|
def test_momento_cache_hit(
|
|
momento_cache: MomentoCache, prompts: list[str], generations: list[list[str]]
|
|
) -> None:
|
|
llm = FakeLLM()
|
|
params = llm.dict()
|
|
params["stop"] = None
|
|
llm_string = str(sorted([(k, v) for k, v in params.items()]))
|
|
|
|
llm_generations = [
|
|
[
|
|
Generation(text=generation, generation_info=params)
|
|
for generation in prompt_i_generations
|
|
]
|
|
for prompt_i_generations in generations
|
|
]
|
|
for prompt_i, llm_generations_i in zip(prompts, llm_generations):
|
|
momento_cache.update(prompt_i, llm_string, llm_generations_i)
|
|
|
|
assert llm.generate(prompts) == LLMResult(
|
|
generations=llm_generations, llm_output={}
|
|
)
|