Files
langchain/docs/docs/integrations/document_loaders/browserbase.ipynb
2024-04-25 01:11:03 +00:00

123 lines
3.0 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Browserbase\n",
"\n",
"[Browserbase](https://browserbase.com) is a serverless platform for running headless browsers, it offers advanced debugging, session recordings, stealth mode, integrated proxies and captcha solving.\n",
"\n",
"## Installation\n",
"\n",
"- Get an API key from [browserbase.com](https://browserbase.com) and set it in environment variables (`BROWSERBASE_API_KEY`).\n",
"- Install the [Browserbase SDK](http://github.com/browserbase/python-sdk):"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"% pip install browserbase"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Loading documents"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can load webpages into LangChain using `BrowserbaseLoader`. Optionally, you can set `text_content` parameter to convert the pages to text-only representation."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.document_loaders import BrowserbaseLoader"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"loader = BrowserbaseLoader(\n",
" urls=[\n",
" \"https://example.com\",\n",
" ],\n",
" # Text mode\n",
" text_content=False,\n",
")\n",
"\n",
"docs = loader.load()\n",
"print(docs[0].page_content[:61])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Loading images\n",
"\n",
"You can also load screenshots of webpages (as bytes) for multi-modal models.\n",
"\n",
"Full example using GPT-4V:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from browserbase import Browserbase\n",
"from browserbase.helpers.gpt4 import GPT4VImage, GPT4VImageDetail\n",
"from langchain_core.messages import HumanMessage\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"chat = ChatOpenAI(model=\"gpt-4-vision-preview\", max_tokens=256)\n",
"browser = Browserbase()\n",
"\n",
"screenshot = browser.screenshot(\"https://browserbase.com\")\n",
"\n",
"result = chat.invoke(\n",
" [\n",
" HumanMessage(\n",
" content=[\n",
" {\"type\": \"text\", \"text\": \"What color is the logo?\"},\n",
" GPT4VImage(screenshot, GPT4VImageDetail.auto),\n",
" ]\n",
" )\n",
" ]\n",
")\n",
"\n",
"print(result.content)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python",
"version": "3.9.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}