mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-10-31 07:41:40 +00:00 
			
		
		
		
	Updates docs and cookbooks to import ChatOpenAI, OpenAI, and OpenAI Embeddings from `langchain_openai` There are likely more --------- Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
		
			
				
	
	
		
			189 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			189 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| {
 | |
|  "cells": [
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "cd835d40",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "# Multi-modal outputs: Image & Text"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "fa88e03a",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "This notebook shows how non-text producing tools can be used to create multi-modal agents.\n",
 | |
|     "\n",
 | |
|     "This example is limited to text and image outputs and uses UUIDs to transfer content across tools and agents. \n",
 | |
|     "\n",
 | |
|     "This example uses Steamship to generate and store generated images. Generated are auth protected by default. \n",
 | |
|     "\n",
 | |
|     "You can get your Steamship api key here: https://steamship.com/account/api"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "0653da01",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "import re\n",
 | |
|     "\n",
 | |
|     "from IPython.display import Image, display\n",
 | |
|     "from steamship import Block, Steamship"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "f6933033",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "from langchain.agents import AgentType, initialize_agent\n",
 | |
|     "from langchain.tools import SteamshipImageGenerationTool\n",
 | |
|     "from langchain_openai import OpenAI"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "71e51e53",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "llm = OpenAI(temperature=0)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "a9fc769d",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "## Dall-E "
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "cd177dfe",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "tools = [SteamshipImageGenerationTool(model_name=\"dall-e\")]"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "c71b1e46",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "mrkl = initialize_agent(\n",
 | |
|     "    tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True\n",
 | |
|     ")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "603aeb9a",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "output = mrkl.run(\"How would you visualize a parot playing soccer?\")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "25eb4efe",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "def show_output(output):\n",
 | |
|     "    \"\"\"Display the multi-modal output from the agent.\"\"\"\n",
 | |
|     "    UUID_PATTERN = re.compile(\n",
 | |
|     "        r\"([0-9A-Za-z]{8}-[0-9A-Za-z]{4}-[0-9A-Za-z]{4}-[0-9A-Za-z]{4}-[0-9A-Za-z]{12})\"\n",
 | |
|     "    )\n",
 | |
|     "\n",
 | |
|     "    outputs = UUID_PATTERN.split(output)\n",
 | |
|     "    outputs = [\n",
 | |
|     "        re.sub(r\"^\\W+\", \"\", el) for el in outputs\n",
 | |
|     "    ]  # Clean trailing and leading non-word characters\n",
 | |
|     "\n",
 | |
|     "    for output in outputs:\n",
 | |
|     "        maybe_block_id = UUID_PATTERN.search(output)\n",
 | |
|     "        if maybe_block_id:\n",
 | |
|     "            display(Image(Block.get(Steamship(), _id=maybe_block_id.group()).raw()))\n",
 | |
|     "        else:\n",
 | |
|     "            print(output, end=\"\\n\\n\")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "e247b2c4",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "## StableDiffusion "
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "315025e7",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "tools = [SteamshipImageGenerationTool(model_name=\"stable-diffusion\")]"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "7930064a",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "mrkl = initialize_agent(\n",
 | |
|     "    tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True\n",
 | |
|     ")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "611a833d",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "output = mrkl.run(\"How would you visualize a parot playing soccer?\")"
 | |
|    ]
 | |
|   }
 | |
|  ],
 | |
|  "metadata": {
 | |
|   "kernelspec": {
 | |
|    "display_name": "Python 3 (ipykernel)",
 | |
|    "language": "python",
 | |
|    "name": "python3"
 | |
|   },
 | |
|   "language_info": {
 | |
|    "codemirror_mode": {
 | |
|     "name": "ipython",
 | |
|     "version": 3
 | |
|    },
 | |
|    "file_extension": ".py",
 | |
|    "mimetype": "text/x-python",
 | |
|    "name": "python",
 | |
|    "nbconvert_exporter": "python",
 | |
|    "pygments_lexer": "ipython3",
 | |
|    "version": "3.10.12"
 | |
|   }
 | |
|  },
 | |
|  "nbformat": 4,
 | |
|  "nbformat_minor": 5
 | |
| }
 |