mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-10-31 07:41:40 +00:00 
			
		
		
		
	**Description:** Update stales link in Together AI documentation **Issue:** Some links pointed to legacy webpages on the Together AI website **Dependencies:** None **Lint and test**: `make format`, `make lint` were run
		
			
				
	
	
		
			157 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			157 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| {
 | |
|  "cells": [
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "0fc0309d-4d49-4bb5-bec0-bd92c6fddb28",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "## Together AI + RAG\n",
 | |
|     " \n",
 | |
|     "[Together AI](https://python.langchain.com/docs/integrations/llms/together) has a broad set of OSS LLMs via inference API.\n",
 | |
|     "\n",
 | |
|     "See [here](https://docs.together.ai/docs/inference-models). We use `\"mistralai/Mixtral-8x7B-Instruct-v0.1` for RAG on the Mixtral paper.\n",
 | |
|     "\n",
 | |
|     "Download the paper:\n",
 | |
|     "https://arxiv.org/pdf/2401.04088.pdf"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "d12fb75a-f707-48d5-82a5-efe2d041813c",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "! pip install --quiet pypdf chromadb tiktoken openai langchain-together"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "9ab49327-0532-4480-804c-d066c302a322",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "# Load\n",
 | |
|     "from langchain_community.document_loaders import PyPDFLoader\n",
 | |
|     "\n",
 | |
|     "loader = PyPDFLoader(\"~/Desktop/mixtral.pdf\")\n",
 | |
|     "data = loader.load()\n",
 | |
|     "\n",
 | |
|     "# Split\n",
 | |
|     "from langchain_text_splitters import RecursiveCharacterTextSplitter\n",
 | |
|     "\n",
 | |
|     "text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=0)\n",
 | |
|     "all_splits = text_splitter.split_documents(data)\n",
 | |
|     "\n",
 | |
|     "# Add to vectorDB\n",
 | |
|     "from langchain_community.embeddings import OpenAIEmbeddings\n",
 | |
|     "from langchain_community.vectorstores import Chroma\n",
 | |
|     "\n",
 | |
|     "\"\"\"\n",
 | |
|     "from langchain_together.embeddings import TogetherEmbeddings\n",
 | |
|     "embeddings = TogetherEmbeddings(model=\"togethercomputer/m2-bert-80M-8k-retrieval\")\n",
 | |
|     "\"\"\"\n",
 | |
|     "vectorstore = Chroma.from_documents(\n",
 | |
|     "    documents=all_splits,\n",
 | |
|     "    collection_name=\"rag-chroma\",\n",
 | |
|     "    embedding=OpenAIEmbeddings(),\n",
 | |
|     ")\n",
 | |
|     "\n",
 | |
|     "retriever = vectorstore.as_retriever()"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 3,
 | |
|    "id": "4efaddd9-3dbb-455c-ba54-0ad7f2d2ce0f",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "from langchain_core.output_parsers import StrOutputParser\n",
 | |
|     "from langchain_core.prompts import ChatPromptTemplate\n",
 | |
|     "from langchain_core.pydantic_v1 import BaseModel\n",
 | |
|     "from langchain_core.runnables import RunnableParallel, RunnablePassthrough\n",
 | |
|     "\n",
 | |
|     "# RAG prompt\n",
 | |
|     "template = \"\"\"Answer the question based only on the following context:\n",
 | |
|     "{context}\n",
 | |
|     "\n",
 | |
|     "Question: {question}\n",
 | |
|     "\"\"\"\n",
 | |
|     "prompt = ChatPromptTemplate.from_template(template)\n",
 | |
|     "\n",
 | |
|     "# LLM\n",
 | |
|     "from langchain_together import Together\n",
 | |
|     "\n",
 | |
|     "llm = Together(\n",
 | |
|     "    model=\"mistralai/Mixtral-8x7B-Instruct-v0.1\",\n",
 | |
|     "    temperature=0.0,\n",
 | |
|     "    max_tokens=2000,\n",
 | |
|     "    top_k=1,\n",
 | |
|     ")\n",
 | |
|     "\n",
 | |
|     "# RAG chain\n",
 | |
|     "chain = (\n",
 | |
|     "    RunnableParallel({\"context\": retriever, \"question\": RunnablePassthrough()})\n",
 | |
|     "    | prompt\n",
 | |
|     "    | llm\n",
 | |
|     "    | StrOutputParser()\n",
 | |
|     ")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 4,
 | |
|    "id": "88b1ee51-1b0f-4ebf-bb32-e50e843f0eeb",
 | |
|    "metadata": {},
 | |
|    "outputs": [
 | |
|     {
 | |
|      "data": {
 | |
|       "text/plain": [
 | |
|        "'\\nAnswer: The architectural details of Mixtral are as follows:\\n- Dimension (dim): 4096\\n- Number of layers (n\\\\_layers): 32\\n- Dimension of each head (head\\\\_dim): 128\\n- Hidden dimension (hidden\\\\_dim): 14336\\n- Number of heads (n\\\\_heads): 32\\n- Number of kv heads (n\\\\_kv\\\\_heads): 8\\n- Context length (context\\\\_len): 32768\\n- Vocabulary size (vocab\\\\_size): 32000\\n- Number of experts (num\\\\_experts): 8\\n- Number of top k experts (top\\\\_k\\\\_experts): 2\\n\\nMixtral is based on a transformer architecture and uses the same modifications as described in [18], with the notable exceptions that Mixtral supports a fully dense context length of 32k tokens, and the feedforward block picks from a set of 8 distinct groups of parameters. At every layer, for every token, a router network chooses two of these groups (the “experts”) to process the token and combine their output additively. This technique increases the number of parameters of a model while controlling cost and latency, as the model only uses a fraction of the total set of parameters per token. Mixtral is pretrained with multilingual data using a context size of 32k tokens. It either matches or exceeds the performance of Llama 2 70B and GPT-3.5, over several benchmarks. In particular, Mixtral vastly outperforms Llama 2 70B on mathematics, code generation, and multilingual benchmarks.'"
 | |
|       ]
 | |
|      },
 | |
|      "execution_count": 4,
 | |
|      "metadata": {},
 | |
|      "output_type": "execute_result"
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "chain.invoke(\"What are the Architectural details of Mixtral?\")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "755cf871-26b7-4e30-8b91-9ffd698470f4",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "Trace: \n",
 | |
|     "\n",
 | |
|     "https://smith.langchain.com/public/935fd642-06a6-4b42-98e3-6074f93115cd/r"
 | |
|    ]
 | |
|   }
 | |
|  ],
 | |
|  "metadata": {
 | |
|   "kernelspec": {
 | |
|    "display_name": "Python 3 (ipykernel)",
 | |
|    "language": "python",
 | |
|    "name": "python3"
 | |
|   },
 | |
|   "language_info": {
 | |
|    "codemirror_mode": {
 | |
|     "name": "ipython",
 | |
|     "version": 3
 | |
|    },
 | |
|    "file_extension": ".py",
 | |
|    "mimetype": "text/x-python",
 | |
|    "name": "python",
 | |
|    "nbconvert_exporter": "python",
 | |
|    "pygments_lexer": "ipython3",
 | |
|    "version": "3.9.6"
 | |
|   }
 | |
|  },
 | |
|  "nbformat": 4,
 | |
|  "nbformat_minor": 5
 | |
| }
 |