mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-10-30 23:29:54 +00:00 
			
		
		
		
	Updates docs and cookbooks to import ChatOpenAI, OpenAI, and OpenAI Embeddings from `langchain_openai` There are likely more --------- Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
		
			
				
	
	
		
			258 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			258 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| {
 | |
|  "cells": [
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "# Tree of Thought (ToT) example\n",
 | |
|     "\n",
 | |
|     "The Tree of Thought (ToT) is a chain that allows you to query a Large Language Model (LLM) using the Tree of Thought technique. This is based on the paper [\"Large Language Model Guided Tree-of-Thought\"](https://arxiv.org/pdf/2305.08291.pdf)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 1,
 | |
|    "metadata": {},
 | |
|    "outputs": [
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "/Users/harrisonchase/.pyenv/versions/3.9.1/envs/langchain/lib/python3.9/site-packages/deeplake/util/check_latest_version.py:32: UserWarning: A newer version of deeplake (3.6.13) is available. It's recommended that you update to the latest version using `pip install -U deeplake`.\n",
 | |
|       "  warnings.warn(\n"
 | |
|      ]
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "from langchain_openai import OpenAI\n",
 | |
|     "\n",
 | |
|     "llm = OpenAI(temperature=1, max_tokens=512, model=\"gpt-3.5-turbo-instruct\")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 2,
 | |
|    "metadata": {},
 | |
|    "outputs": [
 | |
|     {
 | |
|      "name": "stdout",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "3,*,*,2|1,*,3,*|*,1,*,3|4,*,*,1\n",
 | |
|       "\n",
 | |
|       "- This is a 4x4 Sudoku puzzle.\n",
 | |
|       "- The * represents a cell to be filled.\n",
 | |
|       "- The | character separates rows.\n",
 | |
|       "- At each step, replace one or more * with digits 1-4.\n",
 | |
|       "- There must be no duplicate digits in any row, column or 2x2 subgrid.\n",
 | |
|       "- Keep the known digits from previous valid thoughts in place.\n",
 | |
|       "- Each thought can be a partial or the final solution.\n"
 | |
|      ]
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "sudoku_puzzle = \"3,*,*,2|1,*,3,*|*,1,*,3|4,*,*,1\"\n",
 | |
|     "sudoku_solution = \"3,4,1,2|1,2,3,4|2,1,4,3|4,3,2,1\"\n",
 | |
|     "problem_description = f\"\"\"\n",
 | |
|     "{sudoku_puzzle}\n",
 | |
|     "\n",
 | |
|     "- This is a 4x4 Sudoku puzzle.\n",
 | |
|     "- The * represents a cell to be filled.\n",
 | |
|     "- The | character separates rows.\n",
 | |
|     "- At each step, replace one or more * with digits 1-4.\n",
 | |
|     "- There must be no duplicate digits in any row, column or 2x2 subgrid.\n",
 | |
|     "- Keep the known digits from previous valid thoughts in place.\n",
 | |
|     "- Each thought can be a partial or the final solution.\n",
 | |
|     "\"\"\".strip()\n",
 | |
|     "print(problem_description)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "## Rules Based Checker\n",
 | |
|     "\n",
 | |
|     "Each thought is evaluated by the thought checker and is given a validity type: valid, invalid or partial. A simple checker can be rule based. For example, in the case of a sudoku puzzle, the checker can check if the puzzle is valid, invalid or partial.\n",
 | |
|     "\n",
 | |
|     "In the following code we implement a simple rule based checker for a specific 4x4 sudoku puzzle.\n"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 3,
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "import re\n",
 | |
|     "from typing import Tuple\n",
 | |
|     "\n",
 | |
|     "from langchain_experimental.tot.checker import ToTChecker\n",
 | |
|     "from langchain_experimental.tot.thought import ThoughtValidity\n",
 | |
|     "\n",
 | |
|     "\n",
 | |
|     "class MyChecker(ToTChecker):\n",
 | |
|     "    def evaluate(\n",
 | |
|     "        self, problem_description: str, thoughts: Tuple[str, ...] = ()\n",
 | |
|     "    ) -> ThoughtValidity:\n",
 | |
|     "        last_thought = thoughts[-1]\n",
 | |
|     "        clean_solution = last_thought.replace(\" \", \"\").replace('\"', \"\")\n",
 | |
|     "        regex_solution = clean_solution.replace(\"*\", \".\").replace(\"|\", \"\\\\|\")\n",
 | |
|     "        if sudoku_solution in clean_solution:\n",
 | |
|     "            return ThoughtValidity.VALID_FINAL\n",
 | |
|     "        elif re.search(regex_solution, sudoku_solution):\n",
 | |
|     "            return ThoughtValidity.VALID_INTERMEDIATE\n",
 | |
|     "        else:\n",
 | |
|     "            return ThoughtValidity.INVALID"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "Just testing the MyChecker class above:"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 4,
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "checker = MyChecker()\n",
 | |
|     "assert (\n",
 | |
|     "    checker.evaluate(\"\", (\"3,*,*,2|1,*,3,*|*,1,*,3|4,*,*,1\",))\n",
 | |
|     "    == ThoughtValidity.VALID_INTERMEDIATE\n",
 | |
|     ")\n",
 | |
|     "assert (\n",
 | |
|     "    checker.evaluate(\"\", (\"3,4,1,2|1,2,3,4|2,1,4,3|4,3,2,1\",))\n",
 | |
|     "    == ThoughtValidity.VALID_FINAL\n",
 | |
|     ")\n",
 | |
|     "assert (\n",
 | |
|     "    checker.evaluate(\"\", (\"3,4,1,2|1,2,3,4|2,1,4,3|4,3,*,1\",))\n",
 | |
|     "    == ThoughtValidity.VALID_INTERMEDIATE\n",
 | |
|     ")\n",
 | |
|     "assert (\n",
 | |
|     "    checker.evaluate(\"\", (\"3,4,1,2|1,2,3,4|2,1,4,3|4,*,3,1\",))\n",
 | |
|     "    == ThoughtValidity.INVALID\n",
 | |
|     ")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "## Tree of Thought Chain\n",
 | |
|     "\n",
 | |
|     "Initialize and run the ToT chain, with maximum number of interactions `k` set to `30` and the maximum number child thoughts `c` set to `8`."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 5,
 | |
|    "metadata": {},
 | |
|    "outputs": [
 | |
|     {
 | |
|      "name": "stdout",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\n",
 | |
|       "\n",
 | |
|       "\u001b[1m> Entering new ToTChain chain...\u001b[0m\n",
 | |
|       "Starting the ToT solve procedure.\n"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "/Users/harrisonchase/workplace/langchain/libs/langchain/langchain/chains/llm.py:275: UserWarning: The predict_and_parse method is deprecated, instead pass an output parser directly to LLMChain.\n",
 | |
|       "  warnings.warn(\n"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stdout",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\u001b[31;1m\u001b[1;3mThought: 3*,*,2|1*,3,*|*,1,*,3|4,*,*,1\n",
 | |
|       "\u001b[0m\u001b[31;1m\u001b[1;3mThought: 3*,1,2|1*,3,*|*,1,*,3|4,*,*,1\n",
 | |
|       "\u001b[0m\u001b[31;1m\u001b[1;3mThought: 3*,1,2|1*,3,4|*,1,*,3|4,*,*,1\n",
 | |
|       "\u001b[0m\u001b[31;1m\u001b[1;3mThought: 3*,1,2|1*,3,4|*,1,2,3|4,*,*,1\n",
 | |
|       "\u001b[0m\u001b[31;1m\u001b[1;3mThought: 3*,1,2|1*,3,4|2,1,*,3|4,*,*,1\n",
 | |
|       "\u001b[0m"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "Type <enum 'ThoughtValidity'> not serializable\n"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stdout",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\u001b[31;1m\u001b[1;3mThought: 3,*,*,2|1,*,3,*|*,1,*,3|4,1,*,*\n",
 | |
|       "\u001b[0m\u001b[31;1m\u001b[1;3mThought: 3,*,*,2|*,3,2,*|*,1,*,3|4,1,*,*\n",
 | |
|       "\u001b[0m\u001b[31;1m\u001b[1;3mThought: 3,2,*,2|1,*,3,*|*,1,*,3|4,1,*,*\n",
 | |
|       "\u001b[0m\u001b[31;1m\u001b[1;3mThought: 3,2,*,2|1,*,3,*|1,1,*,3|4,1,*,*\n",
 | |
|       "\u001b[0m\u001b[31;1m\u001b[1;3mThought: 3,2,*,2|1,1,3,*|1,1,*,3|4,1,*,*\n",
 | |
|       "\u001b[0m\u001b[33;1m\u001b[1;3mThought: 3,*,*,2|1,2,3,*|*,1,*,3|4,*,*,1\n",
 | |
|       "\u001b[0m\u001b[31;1m\u001b[1;3m    Thought: 3,1,4,2|1,2,3,4|2,1,4,3|4,3,2,1\n",
 | |
|       "\u001b[0m\u001b[32;1m\u001b[1;3m    Thought: 3,4,1,2|1,2,3,4|2,1,4,3|4,3,2,1\n",
 | |
|       "\u001b[0m\n",
 | |
|       "\u001b[1m> Finished chain.\u001b[0m\n"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "data": {
 | |
|       "text/plain": [
 | |
|        "'3,4,1,2|1,2,3,4|2,1,4,3|4,3,2,1'"
 | |
|       ]
 | |
|      },
 | |
|      "execution_count": 5,
 | |
|      "metadata": {},
 | |
|      "output_type": "execute_result"
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "from langchain_experimental.tot.base import ToTChain\n",
 | |
|     "\n",
 | |
|     "tot_chain = ToTChain(\n",
 | |
|     "    llm=llm, checker=MyChecker(), k=30, c=5, verbose=True, verbose_llm=False\n",
 | |
|     ")\n",
 | |
|     "tot_chain.run(problem_description=problem_description)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": []
 | |
|   }
 | |
|  ],
 | |
|  "metadata": {
 | |
|   "kernelspec": {
 | |
|    "display_name": "Python 3 (ipykernel)",
 | |
|    "language": "python",
 | |
|    "name": "python3"
 | |
|   },
 | |
|   "language_info": {
 | |
|    "codemirror_mode": {
 | |
|     "name": "ipython",
 | |
|     "version": 3
 | |
|    },
 | |
|    "file_extension": ".py",
 | |
|    "mimetype": "text/x-python",
 | |
|    "name": "python",
 | |
|    "nbconvert_exporter": "python",
 | |
|    "pygments_lexer": "ipython3",
 | |
|    "version": "3.9.1"
 | |
|   }
 | |
|  },
 | |
|  "nbformat": 4,
 | |
|  "nbformat_minor": 2
 | |
| }
 |