mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-15 20:12:30 +00:00
187 lines
6.2 KiB
Plaintext
187 lines
6.2 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Bittensor\n",
|
|
"\n",
|
|
">[Bittensor](https://bittensor.com/) is a mining network, similar to Bitcoin, that includes built-in incentives designed to encourage miners to contribute compute + knowledge.\n",
|
|
">\n",
|
|
">`NIBittensorLLM` is developed by [Neural Internet](https://neuralinternet.ai/), powered by `Bittensor`.\n",
|
|
"\n",
|
|
">This LLM showcases true potential of decentralized AI by giving you the best response(s) from the `Bittensor protocol`, which consist of various AI models such as `OpenAI`, `LLaMA2` etc.\n",
|
|
"\n",
|
|
"Users can view their logs, requests, and API keys on the [Validator Endpoint Frontend](https://api.neuralinternet.ai/). However, changes to the configuration are currently prohibited; otherwise, the user's queries will be blocked.\n",
|
|
"\n",
|
|
"If you encounter any difficulties or have any questions, please feel free to reach out to our developer on [GitHub](https://github.com/Kunj-2206), [Discord](https://discordapp.com/users/683542109248159777) or join our discord server for latest update and queries [Neural Internet](https://discord.gg/neuralinternet).\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Different Parameter and response handling for NIBittensorLLM "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import json\n",
|
|
"from pprint import pprint\n",
|
|
"\n",
|
|
"from langchain.globals import set_debug\n",
|
|
"from langchain_community.llms import NIBittensorLLM\n",
|
|
"\n",
|
|
"set_debug(True)\n",
|
|
"\n",
|
|
"# System parameter in NIBittensorLLM is optional but you can set whatever you want to perform with model\n",
|
|
"llm_sys = NIBittensorLLM(\n",
|
|
" system_prompt=\"Your task is to determine response based on user prompt.Explain me like I am technical lead of a project\"\n",
|
|
")\n",
|
|
"sys_resp = llm_sys(\n",
|
|
" \"What is bittensor and What are the potential benefits of decentralized AI?\"\n",
|
|
")\n",
|
|
"print(f\"Response provided by LLM with system prompt set is : {sys_resp}\")\n",
|
|
"\n",
|
|
"# The top_responses parameter can give multiple responses based on its parameter value\n",
|
|
"# This below code retrive top 10 miner's response all the response are in format of json\n",
|
|
"\n",
|
|
"# Json response structure is\n",
|
|
"\"\"\" {\n",
|
|
" \"choices\": [\n",
|
|
" {\"index\": Bittensor's Metagraph index number,\n",
|
|
" \"uid\": Unique Identifier of a miner,\n",
|
|
" \"responder_hotkey\": Hotkey of a miner,\n",
|
|
" \"message\":{\"role\":\"assistant\",\"content\": Contains actual response},\n",
|
|
" \"response_ms\": Time in millisecond required to fetch response from a miner} \n",
|
|
" ]\n",
|
|
" } \"\"\"\n",
|
|
"\n",
|
|
"multi_response_llm = NIBittensorLLM(top_responses=10)\n",
|
|
"multi_resp = multi_response_llm.invoke(\"What is Neural Network Feeding Mechanism?\")\n",
|
|
"json_multi_resp = json.loads(multi_resp)\n",
|
|
"pprint(json_multi_resp)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Using NIBittensorLLM with LLMChain and PromptTemplate"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.chains import LLMChain\n",
|
|
"from langchain.globals import set_debug\n",
|
|
"from langchain_community.llms import NIBittensorLLM\n",
|
|
"from langchain_core.prompts import PromptTemplate\n",
|
|
"\n",
|
|
"set_debug(True)\n",
|
|
"\n",
|
|
"template = \"\"\"Question: {question}\n",
|
|
"\n",
|
|
"Answer: Let's think step by step.\"\"\"\n",
|
|
"\n",
|
|
"\n",
|
|
"prompt = PromptTemplate.from_template(template)\n",
|
|
"\n",
|
|
"# System parameter in NIBittensorLLM is optional but you can set whatever you want to perform with model\n",
|
|
"llm = NIBittensorLLM(\n",
|
|
" system_prompt=\"Your task is to determine response based on user prompt.\"\n",
|
|
")\n",
|
|
"\n",
|
|
"llm_chain = LLMChain(prompt=prompt, llm=llm)\n",
|
|
"question = \"What is bittensor?\"\n",
|
|
"\n",
|
|
"llm_chain.run(question)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Using NIBittensorLLM with Conversational Agent and Google Search Tool"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain_community.utilities import GoogleSearchAPIWrapper\n",
|
|
"from langchain_core.tools import Tool\n",
|
|
"\n",
|
|
"search = GoogleSearchAPIWrapper()\n",
|
|
"\n",
|
|
"tool = Tool(\n",
|
|
" name=\"Google Search\",\n",
|
|
" description=\"Search Google for recent results.\",\n",
|
|
" func=search.run,\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain import hub\n",
|
|
"from langchain.agents import (\n",
|
|
" AgentExecutor,\n",
|
|
" create_react_agent,\n",
|
|
")\n",
|
|
"from langchain.memory import ConversationBufferMemory\n",
|
|
"from langchain_community.llms import NIBittensorLLM\n",
|
|
"\n",
|
|
"tools = [tool]\n",
|
|
"\n",
|
|
"prompt = hub.pull(\"hwchase17/react\")\n",
|
|
"\n",
|
|
"\n",
|
|
"llm = NIBittensorLLM(\n",
|
|
" system_prompt=\"Your task is to determine a response based on user prompt\"\n",
|
|
")\n",
|
|
"\n",
|
|
"memory = ConversationBufferMemory(memory_key=\"chat_history\")\n",
|
|
"\n",
|
|
"agent = create_react_agent(llm, tools, prompt)\n",
|
|
"agent_executor = AgentExecutor(agent=agent, tools=tools, memory=memory)\n",
|
|
"\n",
|
|
"response = agent_executor.invoke({\"input\": prompt})"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.10.12"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 4
|
|
}
|