mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-10-31 07:41:40 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			149 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			149 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| {
 | |
|  "cells": [
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "1edb9e6b",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "# ChatGPT Plugin Retriever\n",
 | |
|     "\n",
 | |
|     "This notebook shows how to use the ChatGPT Retriever Plugin within LangChain."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "074b0004",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "## Create\n",
 | |
|     "\n",
 | |
|     "First, let's go over how to create the ChatGPT Retriever Plugin.\n",
 | |
|     "\n",
 | |
|     "To set up the ChatGPT Retriever Plugin, please follow instructions [here](https://github.com/openai/chatgpt-retrieval-plugin).\n",
 | |
|     "\n",
 | |
|     "You can also create the ChatGPT Retriever Plugin from LangChain document loaders. The below code walks through how to do that."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 2,
 | |
|    "id": "bbe89ca0",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "# STEP 1: Load\n",
 | |
|     "\n",
 | |
|     "# Load documents using LangChain's DocumentLoaders\n",
 | |
|     "# This is from https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/csv.html\n",
 | |
|     "\n",
 | |
|     "from langchain.document_loaders.csv_loader import CSVLoader\n",
 | |
|     "loader = CSVLoader(file_path='../../document_loaders/examples/example_data/mlb_teams_2012.csv')\n",
 | |
|     "data = loader.load()\n",
 | |
|     "\n",
 | |
|     "\n",
 | |
|     "# STEP 2: Convert\n",
 | |
|     "\n",
 | |
|     "# Convert Document to format expected by https://github.com/openai/chatgpt-retrieval-plugin\n",
 | |
|     "from typing import List\n",
 | |
|     "from langchain.docstore.document import Document\n",
 | |
|     "import json\n",
 | |
|     "\n",
 | |
|     "def write_json(path: str, documents: List[Document])-> None:\n",
 | |
|     "    results = [{\"text\": doc.page_content} for doc in documents]\n",
 | |
|     "    with open(path, \"w\") as f:\n",
 | |
|     "        json.dump(results, f, indent=2)\n",
 | |
|     "\n",
 | |
|     "write_json(\"foo.json\", data)\n",
 | |
|     "\n",
 | |
|     "# STEP 3: Use\n",
 | |
|     "\n",
 | |
|     "# Ingest this as you would any other json file in https://github.com/openai/chatgpt-retrieval-plugin/tree/main/scripts/process_json\n"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "0474661d",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "## Using the ChatGPT Retriever Plugin\n",
 | |
|     "\n",
 | |
|     "Okay, so we've created the ChatGPT Retriever Plugin, but how do we actually use it?\n",
 | |
|     "\n",
 | |
|     "The below code walks through how to do that."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 1,
 | |
|    "id": "39d6074e",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "from langchain.retrievers import ChatGPTPluginRetriever"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 2,
 | |
|    "id": "33fd23d1",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "retriever = ChatGPTPluginRetriever(url=\"http://0.0.0.0:8000\", bearer_token=\"foo\")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 3,
 | |
|    "id": "16250bdf",
 | |
|    "metadata": {},
 | |
|    "outputs": [
 | |
|     {
 | |
|      "data": {
 | |
|       "text/plain": [
 | |
|        "[Document(page_content=\"This is Alice's phone number: 123-456-7890\", lookup_str='', metadata={'id': '456_0', 'metadata': {'source': 'email', 'source_id': '567', 'url': None, 'created_at': '1609592400.0', 'author': 'Alice', 'document_id': '456'}, 'embedding': None, 'score': 0.925571561}, lookup_index=0),\n",
 | |
|        " Document(page_content='This is a document about something', lookup_str='', metadata={'id': '123_0', 'metadata': {'source': 'file', 'source_id': 'https://example.com/doc1', 'url': 'https://example.com/doc1', 'created_at': '1609502400.0', 'author': 'Alice', 'document_id': '123'}, 'embedding': None, 'score': 0.6987589}, lookup_index=0),\n",
 | |
|        " Document(page_content='Team: Angels \"Payroll (millions)\": 154.49 \"Wins\": 89', lookup_str='', metadata={'id': '59c2c0c1-ae3f-4272-a1da-f44a723ea631_0', 'metadata': {'source': None, 'source_id': None, 'url': None, 'created_at': None, 'author': None, 'document_id': '59c2c0c1-ae3f-4272-a1da-f44a723ea631'}, 'embedding': None, 'score': 0.697888613}, lookup_index=0)]"
 | |
|       ]
 | |
|      },
 | |
|      "execution_count": 3,
 | |
|      "metadata": {},
 | |
|      "output_type": "execute_result"
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "retriever.get_relevant_documents(\"alice's phone number\")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "c8b5794b",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": []
 | |
|   }
 | |
|  ],
 | |
|  "metadata": {
 | |
|   "kernelspec": {
 | |
|    "display_name": "Python 3 (ipykernel)",
 | |
|    "language": "python",
 | |
|    "name": "python3"
 | |
|   },
 | |
|   "language_info": {
 | |
|    "codemirror_mode": {
 | |
|     "name": "ipython",
 | |
|     "version": 3
 | |
|    },
 | |
|    "file_extension": ".py",
 | |
|    "mimetype": "text/x-python",
 | |
|    "name": "python",
 | |
|    "nbconvert_exporter": "python",
 | |
|    "pygments_lexer": "ipython3",
 | |
|    "version": "3.9.1"
 | |
|   }
 | |
|  },
 | |
|  "nbformat": 4,
 | |
|  "nbformat_minor": 5
 | |
| }
 |