mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-10-30 15:22:13 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			160 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			160 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| {
 | |
|  "cells": [
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "9e9b7651",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "# Azure OpenAI LLM Example\n",
 | |
|     "\n",
 | |
|     "This notebook goes over how to use Langchain with [Azure OpenAI](https://aka.ms/azure-openai).\n",
 | |
|     "\n",
 | |
|     "The Azure OpenAI API is compatible with OpenAI's API.  The `openai` Python package makes it easy to use both OpenAI and Azure OpenAI.  You can call Azure OpenAI the same way you call OpenAI with the exceptions noted below.\n",
 | |
|     "\n",
 | |
|     "## API configuration\n",
 | |
|     "You can configure the `openai` package to use Azure OpenAI using environment variables.  The following is for `bash`:\n",
 | |
|     "\n",
 | |
|     "```bash\n",
 | |
|     "# Set this to `azure`\n",
 | |
|     "export OPENAI_API_TYPE=azure\n",
 | |
|     "# The API version you want to use: set this to `2022-12-01` for the released version.\n",
 | |
|     "export OPENAI_API_VERSION=2022-12-01\n",
 | |
|     "# The base URL for your Azure OpenAI resource.  You can find this in the Azure portal under your Azure OpenAI resource.\n",
 | |
|     "export OPENAI_API_BASE=https://your-resource-name.openai.azure.com\n",
 | |
|     "# The API key for your Azure OpenAI resource.  You can find this in the Azure portal under your Azure OpenAI resource.\n",
 | |
|     "export OPENAI_API_KEY=<your Azure OpenAI API key>\n",
 | |
|     "```\n",
 | |
|     "\n",
 | |
|     "Alternatively, you can configure the API right within your running Python environment:\n",
 | |
|     "\n",
 | |
|     "```python\n",
 | |
|     "import os\n",
 | |
|     "os.environ[\"OPENAI_API_TYPE\"] = \"azure\"\n",
 | |
|     "...\n",
 | |
|     "```\n",
 | |
|     "\n",
 | |
|     "## Deployments\n",
 | |
|     "With Azure OpenAI, you set up your own deployments of the common GPT-3 and Codex models.  When calling the API, you need to specify the deployment you want to use.\n",
 | |
|     "\n",
 | |
|     "Let's say your deployment name is `text-davinci-002-prod`.  In the `openai` Python API, you can specify this deployment with the `engine` parameter.  For example:\n",
 | |
|     "\n",
 | |
|     "```python\n",
 | |
|     "import openai\n",
 | |
|     "\n",
 | |
|     "response = openai.Completion.create(\n",
 | |
|     "    engine=\"text-davinci-002-prod\",\n",
 | |
|     "    prompt=\"This is a test\",\n",
 | |
|     "    max_tokens=5\n",
 | |
|     ")\n",
 | |
|     "```\n"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 1,
 | |
|    "id": "8fad2a6e",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "# Import Azure OpenAI\n",
 | |
|     "from langchain.llms import AzureOpenAI"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 2,
 | |
|    "id": "8c80213a",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "# Create an instance of Azure OpenAI\n",
 | |
|     "# Replace the deployment name with your own\n",
 | |
|     "llm = AzureOpenAI(deployment_name=\"text-davinci-002-prod\", model_name=\"text-davinci-002\")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 3,
 | |
|    "id": "592dc404",
 | |
|    "metadata": {},
 | |
|    "outputs": [
 | |
|     {
 | |
|      "data": {
 | |
|       "text/plain": [
 | |
|        "'\\n\\nWhy did the chicken cross the road?\\n\\nTo get to the other side.'"
 | |
|       ]
 | |
|      },
 | |
|      "execution_count": 3,
 | |
|      "metadata": {},
 | |
|      "output_type": "execute_result"
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "# Run the LLM\n",
 | |
|     "llm(\"Tell me a joke\")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "bbfebea1",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "We can also print the LLM and see its custom print."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 4,
 | |
|    "id": "9c33fa19",
 | |
|    "metadata": {},
 | |
|    "outputs": [
 | |
|     {
 | |
|      "name": "stdout",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\u001b[1mAzureOpenAI\u001b[0m\n",
 | |
|       "Params: {'deployment_name': 'text-davinci-002', 'model_name': 'text-davinci-002', 'temperature': 0.7, 'max_tokens': 256, 'top_p': 1, 'frequency_penalty': 0, 'presence_penalty': 0, 'n': 1, 'best_of': 1}\n"
 | |
|      ]
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "print(llm)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "5a8b5917",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": []
 | |
|   }
 | |
|  ],
 | |
|  "metadata": {
 | |
|   "kernelspec": {
 | |
|    "display_name": "Python 3 (ipykernel)",
 | |
|    "language": "python",
 | |
|    "name": "python3"
 | |
|   },
 | |
|   "language_info": {
 | |
|    "codemirror_mode": {
 | |
|     "name": "ipython",
 | |
|     "version": 3
 | |
|    },
 | |
|    "file_extension": ".py",
 | |
|    "mimetype": "text/x-python",
 | |
|    "name": "python",
 | |
|    "nbconvert_exporter": "python",
 | |
|    "pygments_lexer": "ipython3",
 | |
|    "version": "3.10.9"
 | |
|   },
 | |
|   "vscode": {
 | |
|    "interpreter": {
 | |
|     "hash": "3bae61d45a4f4d73ecea8149862d4bfbae7d4d4a2f71b6e609a1be8f6c8d4298"
 | |
|    }
 | |
|   }
 | |
|  },
 | |
|  "nbformat": 4,
 | |
|  "nbformat_minor": 5
 | |
| }
 |