langchain/libs/langchain
Henry 2281f00198
langchain: Standardize output_parser.py across all agent types for custom FORMAT_INSTRUCTIONS (#17168)
- **Description:** 
This PR standardizes the `output_parser.py` file across all agent types
to ensure a uniform parsing mechanism is implemented. It introduces a
cohesive structure and common interface for output parsing, facilitating
easier modifications and extensions by users. The standardized approach
enhances maintainability and scalability of the codebase by providing a
consistent pattern for output parsing, which can be easily understood
and utilized across different agent types.

This PR builds upon the foundation set by a previously merged PR, which
focused exclusively on standardizing the `output_parser.py` for the
`conversational_agent` ([PR
#16945](https://github.com/langchain-ai/langchain/pull/16945)). With
this new update, I extend the standardization efforts to encompass
`output_parser.py` files across all agent types. This enhancement not
only unifies the parsing mechanism across the board but also introduces
the flexibility for users to incorporate custom `FORMAT_INSTRUCTIONS`.

  - **Issue:** 
https://github.com/langchain-ai/langchain/issues/10721
https://github.com/langchain-ai/langchain/issues/4044

  - **Dependencies:**
No new dependencies required for this change

  - **Twitter handle:**
With my github user is enough. Thanks

I hope you accept my PR.
2024-02-07 13:46:17 -08:00
..
langchain langchain: Standardize output_parser.py across all agent types for custom FORMAT_INSTRUCTIONS (#17168) 2024-02-07 13:46:17 -08:00
scripts langchain[patch], experimental[patch]: update utilities imports (#15438) 2024-01-03 02:18:15 -05:00
tests community[minor]: Add SelfQueryRetriever support to PGVector (#16991) 2024-02-06 10:50:50 -08:00
.dockerignore
.flake8
dev.Dockerfile langchain: Fix for issue #14631 - .devcontainer doesnt build (#15251) 2023-12-28 08:25:03 -08:00
Dockerfile
LICENSE IMPROVEMENT add license file to subproject (#8403) 2023-11-13 11:48:21 -08:00
Makefile infra: add -p to mkdir in lint steps (#17013) 2024-02-05 11:22:06 -08:00
poetry.lock langchain[patch]: Release 0.1.5 (#16881) 2024-02-01 08:10:29 -08:00
poetry.toml
pyproject.toml langchain[patch]: Release 0.1.5 (#16881) 2024-02-01 08:10:29 -08:00
README.md docs: developer docs (#14776) 2023-12-17 12:55:49 -08:00

🦜🔗 LangChain

Building applications with LLMs through composability

Release Notes lint test Downloads License: MIT Twitter Open in Dev Containers Open in GitHub Codespaces GitHub star chart Dependency Status Open Issues

Looking for the JS/TS version? Check out LangChain.js.

To help you ship LangChain apps to production faster, check out LangSmith. LangSmith is a unified developer platform for building, testing, and monitoring LLM applications. Fill out this form to get off the waitlist or speak with our sales team

Quick Install

pip install langchain or pip install langsmith && conda install langchain -c conda-forge

🤔 What is this?

Large language models (LLMs) are emerging as a transformative technology, enabling developers to build applications that they previously could not. However, using these LLMs in isolation is often insufficient for creating a truly powerful app - the real power comes when you can combine them with other sources of computation or knowledge.

This library aims to assist in the development of those types of applications. Common examples of these applications include:

Question Answering over specific documents

💬 Chatbots

🤖 Agents

📖 Documentation

Please see here for full documentation on:

  • Getting started (installation, setting up the environment, simple examples)
  • How-To examples (demos, integrations, helper functions)
  • Reference (full API docs)
  • Resources (high-level explanation of core concepts)

🚀 What can this help with?

There are six main areas that LangChain is designed to help with. These are, in increasing order of complexity:

📃 LLMs and Prompts:

This includes prompt management, prompt optimization, a generic interface for all LLMs, and common utilities for working with LLMs.

🔗 Chains:

Chains go beyond a single LLM call and involve sequences of calls (whether to an LLM or a different utility). LangChain provides a standard interface for chains, lots of integrations with other tools, and end-to-end chains for common applications.

📚 Data Augmented Generation:

Data Augmented Generation involves specific types of chains that first interact with an external data source to fetch data for use in the generation step. Examples include summarization of long pieces of text and question/answering over specific data sources.

🤖 Agents:

Agents involve an LLM making decisions about which Actions to take, taking that Action, seeing an Observation, and repeating that until done. LangChain provides a standard interface for agents, a selection of agents to choose from, and examples of end-to-end agents.

🧠 Memory:

Memory refers to persisting state between calls of a chain/agent. LangChain provides a standard interface for memory, a collection of memory implementations, and examples of chains/agents that use memory.

🧐 Evaluation:

[BETA] Generative models are notoriously hard to evaluate with traditional metrics. One new way of evaluating them is using language models themselves to do the evaluation. LangChain provides some prompts/chains for assisting in this.

For more information on these concepts, please see our full documentation.

💁 Contributing

As an open-source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infrastructure, or better documentation.

For detailed information on how to contribute, see the Contributing Guide.