mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-10-31 16:08:59 +00:00 
			
		
		
		
	Co-authored-by: jacoblee93 <jacoblee93@gmail.com> Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
		
			
				
	
	
		
			134 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			134 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| {
 | |
|  "cells": [
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "872bb8b5",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "# Transformation\n",
 | |
|     "\n",
 | |
|     "This notebook showcases using a generic transformation chain.\n",
 | |
|     "\n",
 | |
|     "As an example, we will create a dummy transformation that takes in a super long text, filters the text to only the first 3 paragraphs, and then passes that into an LLMChain to summarize those."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 1,
 | |
|    "id": "bbbb4330",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "from langchain.chains import TransformChain, LLMChain, SimpleSequentialChain\n",
 | |
|     "from langchain.llms import OpenAI\n",
 | |
|     "from langchain.prompts import PromptTemplate"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 3,
 | |
|    "id": "8ae5937c",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "with open(\"../../state_of_the_union.txt\") as f:\n",
 | |
|     "    state_of_the_union = f.read()"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 4,
 | |
|    "id": "98739592",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "def transform_func(inputs: dict) -> dict:\n",
 | |
|     "    text = inputs[\"text\"]\n",
 | |
|     "    shortened_text = \"\\n\\n\".join(text.split(\"\\n\\n\")[:3])\n",
 | |
|     "    return {\"output_text\": shortened_text}\n",
 | |
|     "\n",
 | |
|     "\n",
 | |
|     "transform_chain = TransformChain(\n",
 | |
|     "    input_variables=[\"text\"], output_variables=[\"output_text\"], transform=transform_func\n",
 | |
|     ")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 5,
 | |
|    "id": "e9397934",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "template = \"\"\"Summarize this text:\n",
 | |
|     "\n",
 | |
|     "{output_text}\n",
 | |
|     "\n",
 | |
|     "Summary:\"\"\"\n",
 | |
|     "prompt = PromptTemplate(input_variables=[\"output_text\"], template=template)\n",
 | |
|     "llm_chain = LLMChain(llm=OpenAI(), prompt=prompt)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 6,
 | |
|    "id": "06f51f17",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "sequential_chain = SimpleSequentialChain(chains=[transform_chain, llm_chain])"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 7,
 | |
|    "id": "f7caa1ee",
 | |
|    "metadata": {},
 | |
|    "outputs": [
 | |
|     {
 | |
|      "data": {
 | |
|       "text/plain": [
 | |
|        "' The speaker addresses the nation, noting that while last year they were kept apart due to COVID-19, this year they are together again. They are reminded that regardless of their political affiliations, they are all Americans.'"
 | |
|       ]
 | |
|      },
 | |
|      "execution_count": 7,
 | |
|      "metadata": {},
 | |
|      "output_type": "execute_result"
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "sequential_chain.run(state_of_the_union)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "e3ca6409",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": []
 | |
|   }
 | |
|  ],
 | |
|  "metadata": {
 | |
|   "kernelspec": {
 | |
|    "display_name": "Python 3 (ipykernel)",
 | |
|    "language": "python",
 | |
|    "name": "python3"
 | |
|   },
 | |
|   "language_info": {
 | |
|    "codemirror_mode": {
 | |
|     "name": "ipython",
 | |
|     "version": 3
 | |
|    },
 | |
|    "file_extension": ".py",
 | |
|    "mimetype": "text/x-python",
 | |
|    "name": "python",
 | |
|    "nbconvert_exporter": "python",
 | |
|    "pygments_lexer": "ipython3",
 | |
|    "version": "3.11.3"
 | |
|   }
 | |
|  },
 | |
|  "nbformat": 4,
 | |
|  "nbformat_minor": 5
 | |
| }
 |