langchain/docs/docs/integrations/llms/yandex.ipynb
Dmitry Tyumentsev e8c1850369
Add YandexGPT LLM and Chat model (#11703)
**Description:** Introducing an ability to work with the
[YandexGPT](https://cloud.yandex.com/en/services/yandexgpt) language
model.
2023-10-16 20:30:07 -07:00

120 lines
2.7 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# YandexGPT\n",
"\n",
"This notebook goes over how to use Langchain with [YandexGPT](https://cloud.yandex.com/en/services/yandexgpt).\n",
"\n",
"To use, you should have the `yandexcloud` python package installed."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install yandexcloud"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First, you should [create service account](https://cloud.yandex.com/en/docs/iam/operations/sa/create) with the `ai.languageModels.user` role.\n",
"\n",
"Next, you have two authentication options:\n",
"- [IAM token](https://cloud.yandex.com/en/docs/iam/operations/iam-token/create-for-sa).\n",
" You can specify the token in a constructor parameter `iam_token` or in an environment variable `YC_IAM_TOKEN`.\n",
"- [API key](https://cloud.yandex.com/en/docs/iam/operations/api-key/create)\n",
" You can specify the key in a constructor parameter `api_key` or in an environment variable `YC_API_KEY`."
]
},
{
"cell_type": "code",
"execution_count": 246,
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains import LLMChain\n",
"from langchain.llms import YandexGPT\n",
"from langchain.prompts import PromptTemplate"
]
},
{
"cell_type": "code",
"execution_count": 247,
"metadata": {},
"outputs": [],
"source": [
"template = \"What is the capital of {country}?\"\n",
"prompt = PromptTemplate(template=template, input_variables=[\"country\"])"
]
},
{
"cell_type": "code",
"execution_count": 248,
"metadata": {},
"outputs": [],
"source": [
"llm = YandexGPT()"
]
},
{
"cell_type": "code",
"execution_count": 249,
"metadata": {},
"outputs": [],
"source": [
"llm_chain = LLMChain(prompt=prompt, llm=llm)"
]
},
{
"cell_type": "code",
"execution_count": 250,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Moscow'"
]
},
"execution_count": 250,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"country = \"Russia\"\n",
"\n",
"llm_chain.run(country)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.18"
}
},
"nbformat": 4,
"nbformat_minor": 4
}