Files
langchain/docs/docs/contributing/how_to/code/setup.mdx
2025-04-29 09:22:04 -04:00

196 lines
6.3 KiB
Plaintext

# Setup
This guide walks through how to run the repository locally and check in your first code.
For a [development container](https://containers.dev/), see the [.devcontainer folder](https://github.com/langchain-ai/langchain/tree/master/.devcontainer).
## Dependency Management: `uv` and other env/dependency managers
This project utilizes [uv](https://docs.astral.sh/uv/) v0.5+ as a dependency manager.
Install `uv`: **[documentation on how to install it](https://docs.astral.sh/uv/getting-started/installation/)**.
## Different packages
This repository contains multiple packages:
- `langchain-core`: Base interfaces for key abstractions as well as logic for combining them in chains (LangChain Expression Language).
- `langchain`: Chains, agents, and retrieval logic that makes up the cognitive architecture of your applications.
- Partner integrations: Partner packages in `libs/partners` that are independently version controlled.
:::note
Some LangChain packages live outside the monorepo, see for example
[langchain-community](https://github.com/langchain-ai/langchain-community) for various
third-party integrations and
[langchain-experimental](https://github.com/langchain-ai/langchain-experimental) for
abstractions that are experimental (either in the sense that the techniques are novel
and still being tested, or they require giving the LLM more access than would be
possible in most production systems).
:::
Each of these has its own development environment. Docs are run from the top-level makefile, but development
is split across separate test & release flows.
For this quickstart, start with `langchain`:
```bash
cd libs/langchain
```
## Local Development Dependencies
Install development requirements (for running langchain, running examples, linting, formatting, tests, and coverage):
```bash
uv sync
```
Then verify dependency installation:
```bash
make test
```
## Testing
**Note:** In `langchain`, `langchain-community`, and `langchain-experimental`, some test dependencies are optional. See the following section about optional dependencies.
Unit tests cover modular logic that does not require calls to outside APIs.
If you add new logic, please add a unit test.
To run unit tests:
```bash
make test
```
To run unit tests in Docker:
```bash
make docker_tests
```
There are also [integration tests and code-coverage](../testing.mdx) available.
### Developing langchain_core
If you are only developing `langchain_core`, you can simply install the dependencies for the project and run tests:
```bash
cd libs/core
make test
```
## Formatting and Linting
Run these locally before submitting a PR; the CI system will check also.
### Code Formatting
Formatting for this project is done via [ruff](https://docs.astral.sh/ruff/rules/).
To run formatting for docs, cookbook and templates:
```bash
make format
```
To run formatting for a library, run the same command from the relevant library directory:
```bash
cd libs/{LIBRARY}
make format
```
Additionally, you can run the formatter only on the files that have been modified in your current branch as compared to the master branch using the format_diff command:
```bash
make format_diff
```
This is especially useful when you have made changes to a subset of the project and want to ensure your changes are properly formatted without affecting the rest of the codebase.
#### Linting
Linting for this project is done via a combination of [ruff](https://docs.astral.sh/ruff/rules/) and [mypy](http://mypy-lang.org/).
To run linting for docs, cookbook and templates:
```bash
make lint
```
To run linting for a library, run the same command from the relevant library directory:
```bash
cd libs/{LIBRARY}
make lint
```
In addition, you can run the linter only on the files that have been modified in your current branch as compared to the master branch using the lint_diff command:
```bash
make lint_diff
```
This can be very helpful when you've made changes to only certain parts of the project and want to ensure your changes meet the linting standards without having to check the entire codebase.
We recognize linting can be annoying - if you do not want to do it, please contact a project maintainer, and they can help you with it. We do not want this to be a blocker for good code getting contributed.
### Spellcheck
Spellchecking for this project is done via [codespell](https://github.com/codespell-project/codespell).
Note that `codespell` finds common typos, so it could have false-positive (correctly spelled but rarely used) and false-negatives (not finding misspelled) words.
To check spelling for this project:
```bash
make spell_check
```
To fix spelling in place:
```bash
make spell_fix
```
If codespell is incorrectly flagging a word, you can skip spellcheck for that word by adding it to the codespell config in the `pyproject.toml` file.
```python
[tool.codespell]
...
# Add here:
ignore-words-list = 'momento,collison,ned,foor,reworkd,parth,whats,aapply,mysogyny,unsecure'
```
## Working with Optional Dependencies
`langchain`, `langchain-community`, and `langchain-experimental` rely on optional dependencies to keep these packages lightweight.
`langchain-core` and partner packages **do not use** optional dependencies in this way.
You'll notice that `pyproject.toml` and `uv.lock` are **not** touched when you add optional dependencies below.
If you're adding a new dependency to Langchain, assume that it will be an optional dependency, and
that most users won't have it installed.
Users who do not have the dependency installed should be able to **import** your code without
any side effects (no warnings, no errors, no exceptions).
To introduce the dependency to a library, please do the following:
1. Open extended_testing_deps.txt and add the dependency
2. Add a unit test that the very least attempts to import the new code. Ideally, the unit
test makes use of lightweight fixtures to test the logic of the code.
3. Please use the `@pytest.mark.requires(package_name)` decorator for any unit tests that require the dependency.
## Adding a Jupyter Notebook
If you are adding a Jupyter Notebook example, you'll want to run with `test` dependencies:
```bash
uv run --group test jupyter notebook
```
When you run `uv sync`, the `langchain` package is installed as editable in the virtualenv, so your new logic can be imported into the notebook.