mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-04 06:37:58 +00:00
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com> Co-authored-by: Lance Martin <lance@langchain.dev> Co-authored-by: Jacob Lee <jacoblee93@gmail.com>
55 lines
1.9 KiB
Python
55 lines
1.9 KiB
Python
from typing import List, Tuple
|
|
from langchain.schema.messages import HumanMessage, AIMessage
|
|
from langchain.chat_models import ChatOpenAI
|
|
from langchain.agents import AgentExecutor
|
|
from langchain.utilities.tavily_search import TavilySearchAPIWrapper
|
|
from langchain.tools.tavily_search import TavilySearchResults
|
|
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
|
from langchain.tools.render import format_tool_to_openai_function
|
|
from langchain.agents.format_scratchpad import format_to_openai_functions
|
|
from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser
|
|
from langchain.pydantic_v1 import BaseModel
|
|
|
|
|
|
# Fake Tool
|
|
search = TavilySearchAPIWrapper()
|
|
tavily_tool = TavilySearchResults(api_wrapper=search)
|
|
|
|
tools = [tavily_tool]
|
|
|
|
llm = ChatOpenAI(temperature=0)
|
|
prompt = ChatPromptTemplate.from_messages([
|
|
("system", "You are very powerful assistant, but bad at calculating lengths of words."),
|
|
MessagesPlaceholder(variable_name="chat_history"),
|
|
("user", "{input}"),
|
|
MessagesPlaceholder(variable_name="agent_scratchpad"),
|
|
])
|
|
|
|
llm_with_tools = llm.bind(
|
|
functions=[format_tool_to_openai_function(t) for t in tools]
|
|
)
|
|
|
|
def _format_chat_history(chat_history: List[Tuple[str, str]]):
|
|
buffer = []
|
|
for human, ai in chat_history:
|
|
buffer.append(HumanMessage(content=human))
|
|
buffer.append(AIMessage(content=ai))
|
|
return buffer
|
|
|
|
|
|
agent = {
|
|
"input": lambda x: x["input"],
|
|
"chat_history": lambda x: _format_chat_history(x['chat_history']),
|
|
"agent_scratchpad": lambda x: format_to_openai_functions(x['intermediate_steps']),
|
|
} | prompt | llm_with_tools | OpenAIFunctionsAgentOutputParser()
|
|
|
|
class AgentInput(BaseModel):
|
|
input: str
|
|
chat_history: List[Tuple[str, str]]
|
|
|
|
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True).with_types(
|
|
input_type=AgentInput
|
|
)
|
|
|
|
agent_executor = agent_executor | (lambda x: x["output"])
|