mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-02 04:58:46 +00:00
- *[x] **PR title**: "community: adding langchain-predictionguard partner package documentation" - *[x] **PR message**: - **Description:** This PR adds documentation for the langchain-predictionguard package to main langchain repo, along with deprecating current Prediction Guard LLMs package. The LLMs package was previously broken, so I also updated it one final time to allow it to continue working from this point onward. . This enables users to chat with LLMs through the Prediction Guard ecosystem. - **Package Links**: - [PyPI](https://pypi.org/project/langchain-predictionguard/) - [Github Repo](https://www.github.com/predictionguard/langchain-predictionguard) - **Issue:** None - **Dependencies:** None - **Twitter handle:** [@predictionguard](https://x.com/predictionguard) - *[x] **Add tests and docs**: All docs have been added for the partner package, and the current LLMs package test was updated to reflect changes. - *[x] **Lint and test**: Linting tests are all passing. --------- Co-authored-by: ccurme <chester.curme@gmail.com>
167 lines
5.3 KiB
Python
167 lines
5.3 KiB
Python
import logging
|
|
from typing import Any, Dict, List, Optional, Union
|
|
|
|
from langchain_core._api.deprecation import deprecated
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
from langchain_core.language_models.llms import LLM
|
|
from langchain_core.utils import get_from_dict_or_env
|
|
from pydantic import BaseModel, ConfigDict, model_validator
|
|
|
|
from langchain_community.llms.utils import enforce_stop_tokens
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
@deprecated(
|
|
since="0.3.28",
|
|
removal="1.0",
|
|
alternative_import="langchain_predictionguard.PredictionGuard",
|
|
)
|
|
class PredictionGuard(LLM):
|
|
"""Prediction Guard large language models.
|
|
|
|
To use, you should have the ``predictionguard`` python package installed, and the
|
|
environment variable ``PREDICTIONGUARD_API_KEY`` set with your API key, or pass
|
|
it as a named parameter to the constructor.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
llm = PredictionGuard(
|
|
model="Hermes-3-Llama-3.1-8B",
|
|
predictionguard_api_key="your Prediction Guard API key",
|
|
)
|
|
"""
|
|
|
|
client: Any = None #: :meta private:
|
|
|
|
model: Optional[str] = "Hermes-3-Llama-3.1-8B"
|
|
"""Model name to use."""
|
|
|
|
max_tokens: Optional[int] = 256
|
|
"""Denotes the number of tokens to predict per generation."""
|
|
|
|
temperature: Optional[float] = 0.75
|
|
"""A non-negative float that tunes the degree of randomness in generation."""
|
|
|
|
top_p: Optional[float] = 0.1
|
|
"""A non-negative float that controls the diversity of the generated tokens."""
|
|
|
|
top_k: Optional[int] = None
|
|
"""The diversity of the generated text based on top-k sampling."""
|
|
|
|
stop: Optional[List[str]] = None
|
|
|
|
predictionguard_input: Optional[Dict[str, Union[str, bool]]] = None
|
|
"""The input check to run over the prompt before sending to the LLM."""
|
|
|
|
predictionguard_output: Optional[Dict[str, bool]] = None
|
|
"""The output check to run the LLM output against."""
|
|
|
|
predictionguard_api_key: Optional[str] = None
|
|
"""Prediction Guard API key."""
|
|
|
|
model_config = ConfigDict(extra="forbid")
|
|
|
|
@model_validator(mode="before")
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that the api_key and python package exists in environment."""
|
|
pg_api_key = get_from_dict_or_env(
|
|
values, "predictionguard_api_key", "PREDICTIONGUARD_API_KEY"
|
|
)
|
|
|
|
try:
|
|
from predictionguard import PredictionGuard
|
|
|
|
values["client"] = PredictionGuard(
|
|
api_key=pg_api_key,
|
|
)
|
|
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import predictionguard python package. "
|
|
"Please install it with `pip install predictionguard`."
|
|
)
|
|
|
|
return values
|
|
|
|
@property
|
|
def _identifying_params(self) -> Dict[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
return {"model": self.model}
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of llm."""
|
|
return "predictionguard"
|
|
|
|
def _get_parameters(self, **kwargs: Any) -> Dict[str, Any]:
|
|
# input kwarg conflicts with LanguageModelInput on BaseChatModel
|
|
input = kwargs.pop("predictionguard_input", self.predictionguard_input)
|
|
output = kwargs.pop("predictionguard_output", self.predictionguard_output)
|
|
|
|
params = {
|
|
**{
|
|
"max_tokens": self.max_tokens,
|
|
"temperature": self.temperature,
|
|
"top_p": self.top_p,
|
|
"top_k": self.top_k,
|
|
"input": (
|
|
input.model_dump() if isinstance(input, BaseModel) else input
|
|
),
|
|
"output": (
|
|
output.model_dump() if isinstance(output, BaseModel) else output
|
|
),
|
|
},
|
|
**kwargs,
|
|
}
|
|
|
|
return params
|
|
|
|
def _call(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
"""Call out to Prediction Guard's model API.
|
|
Args:
|
|
prompt: The prompt to pass into the model.
|
|
Returns:
|
|
The string generated by the model.
|
|
Example:
|
|
.. code-block:: python
|
|
response = llm.invoke("Tell me a joke.")
|
|
"""
|
|
|
|
params = self._get_parameters(**kwargs)
|
|
|
|
stops = None
|
|
if self.stop is not None and stop is not None:
|
|
raise ValueError("`stop` found in both the input and default params.")
|
|
elif self.stop is not None:
|
|
stops = self.stop
|
|
else:
|
|
stops = stop
|
|
|
|
response = self.client.completions.create(
|
|
model=self.model,
|
|
prompt=prompt,
|
|
**params,
|
|
)
|
|
|
|
for res in response["choices"]:
|
|
if res.get("status", "").startswith("error: "):
|
|
err_msg = res["status"].removeprefix("error: ")
|
|
raise ValueError(f"Error from PredictionGuard API: {err_msg}")
|
|
|
|
text = response["choices"][0]["text"]
|
|
|
|
# If stop tokens are provided, Prediction Guard's endpoint returns them.
|
|
# In order to make this consistent with other endpoints, we strip them.
|
|
if stops:
|
|
text = enforce_stop_tokens(text, stops)
|
|
|
|
return text
|