langchain/docs/docs/integrations/retrievers/amazon_kendra_retriever.ipynb
Leonid Ganeline 3624f56ccb
docs: update imports of retrievers to use langchain_community (#18707)
Updated `langchain` imports to `langchain_community`.
2024-03-08 13:04:38 -05:00

98 lines
2.5 KiB
Plaintext

{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Amazon Kendra\n",
"\n",
"> [Amazon Kendra](https://docs.aws.amazon.com/kendra/latest/dg/what-is-kendra.html) is an intelligent search service provided by `Amazon Web Services` (`AWS`). It utilizes advanced natural language processing (NLP) and machine learning algorithms to enable powerful search capabilities across various data sources within an organization. `Kendra` is designed to help users find the information they need quickly and accurately, improving productivity and decision-making.\n",
"\n",
"> With `Kendra`, users can search across a wide range of content types, including documents, FAQs, knowledge bases, manuals, and websites. It supports multiple languages and can understand complex queries, synonyms, and contextual meanings to provide highly relevant search results."
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Using the Amazon Kendra Index Retriever"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet boto3"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.retrievers import AmazonKendraRetriever"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Create New Retriever"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"retriever = AmazonKendraRetriever(index_id=\"c0806df7-e76b-4bce-9b5c-d5582f6b1a03\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Now you can use retrieved documents from Kendra index"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"retriever.get_relevant_documents(\"what is langchain\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 4
}