langchain/docs/docs/integrations/text_embedding/optimum_intel.ipynb
Moshe Berchansky 20a56fe0a2
community[minor]: Add QuantizedEmbedders (#17391)
**Description:** 
* adding Quantized embedders using optimum-intel and
intel-extension-for-pytorch.
* added mdx documentation and example notebooks 
* added embedding import testing.

**Dependencies:** 
optimum = {extras = ["neural-compressor"], version = "^1.14.0", optional
= true}
intel_extension_for_pytorch = {version = "^2.2.0", optional = true}

Dependencies have been added to pyproject.toml for the community lib.  

**Twitter handle:** @peter_izsak

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-15 11:01:24 -08:00

202 lines
5.0 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "ae6f9d9d-fe44-489c-9661-dac69683dcd2",
"metadata": {},
"source": [
"# Embedding Documents using Optimized and Quantized Embedders\n",
"\n",
"Embedding all documents using Quantized Embedders.\n",
"\n",
"The embedders are based on optimized models, created by using [optimum-intel](https://github.com/huggingface/optimum-intel.git) and [IPEX](https://github.com/intel/intel-extension-for-pytorch).\n",
"\n",
"Example text is based on [SBERT](https://www.sbert.net/docs/pretrained_cross-encoders.html)."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "b9d1a3bb-83b1-4029-ad8d-411db1fba034",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"loading configuration file inc_config.json from cache at \n",
"INCConfig {\n",
" \"distillation\": {},\n",
" \"neural_compressor_version\": \"2.4.1\",\n",
" \"optimum_version\": \"1.16.2\",\n",
" \"pruning\": {},\n",
" \"quantization\": {\n",
" \"dataset_num_samples\": 50,\n",
" \"is_static\": true\n",
" },\n",
" \"save_onnx_model\": false,\n",
" \"torch_version\": \"2.2.0\",\n",
" \"transformers_version\": \"4.37.2\"\n",
"}\n",
"\n",
"Using `INCModel` to load a TorchScript model will be deprecated in v1.15.0, to load your model please use `IPEXModel` instead.\n"
]
}
],
"source": [
"from langchain_community.embeddings import QuantizedBiEncoderEmbeddings\n",
"\n",
"model_name = \"Intel/bge-small-en-v1.5-rag-int8-static\"\n",
"encode_kwargs = {\"normalize_embeddings\": True} # set True to compute cosine similarity\n",
"\n",
"model = QuantizedBiEncoderEmbeddings(\n",
" model_name=model_name,\n",
" encode_kwargs=encode_kwargs,\n",
" query_instruction=\"Represent this sentence for searching relevant passages: \",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "34318164-7a6f-47b6-8690-3b1d71e1fcfc",
"metadata": {},
"source": [
"Lets ask a question, and compare to 2 documents. The first contains the answer to the question, and the second one does not. \n",
"\n",
"We can check better suits our query."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "55ff07ca-fb44-4dcf-b2d3-dde021a53983",
"metadata": {},
"outputs": [],
"source": [
"question = \"How many people live in Berlin?\""
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "aebef832-5534-440c-a4a8-4bf56ccd8ad4",
"metadata": {},
"outputs": [],
"source": [
"documents = [\n",
" \"Berlin had a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.\",\n",
" \"Berlin is well known for its museums.\",\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "4eec7eda-0d9b-4488-a0e8-3eedd28ab0b1",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Batches: 100%|██████████| 1/1 [00:00<00:00, 4.18it/s]\n"
]
}
],
"source": [
"doc_vecs = model.embed_documents(documents)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "8e6dac72-5a0b-4421-9454-aa0a49b20c66",
"metadata": {},
"outputs": [],
"source": [
"query_vec = model.embed_query(question)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "ec26eb7a-a259-4bb9-b9d8-9ff345a8c798",
"metadata": {},
"outputs": [],
"source": [
"import torch"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "9ca1ee83-2a6a-4f65-bc2f-3942a0c068c6",
"metadata": {},
"outputs": [],
"source": [
"doc_vecs_torch = torch.tensor(doc_vecs)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "4f6a1986-339e-443a-a2f6-ae3f3ad4266c",
"metadata": {},
"outputs": [],
"source": [
"query_vec_torch = torch.tensor(query_vec)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "2b49446e-1336-46b3-b9ef-af56b4870876",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tensor([0.7980, 0.6529])"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"query_vec_torch @ doc_vecs_torch.T"
]
},
{
"cell_type": "markdown",
"id": "6cc1ac2a-9641-408e-a373-736d121fc3c7",
"metadata": {},
"source": [
"We can see that indeed the first one ranks higher."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.18"
}
},
"nbformat": 4,
"nbformat_minor": 5
}