langchain/docs/docs/integrations/text_embedding/self-hosted.ipynb
Bagatur 480626dc99
docs, community[patch], experimental[patch], langchain[patch], cli[pa… (#15412)
…tch]: import models from community

ran
```bash
git grep -l 'from langchain\.chat_models' | xargs -L 1 sed -i '' "s/from\ langchain\.chat_models/from\ langchain_community.chat_models/g"
git grep -l 'from langchain\.llms' | xargs -L 1 sed -i '' "s/from\ langchain\.llms/from\ langchain_community.llms/g"
git grep -l 'from langchain\.embeddings' | xargs -L 1 sed -i '' "s/from\ langchain\.embeddings/from\ langchain_community.embeddings/g"
git checkout master libs/langchain/tests/unit_tests/llms
git checkout master libs/langchain/tests/unit_tests/chat_models
git checkout master libs/langchain/tests/unit_tests/embeddings/test_imports.py
make format
cd libs/langchain; make format
cd ../experimental; make format
cd ../core; make format
```
2024-01-02 15:32:16 -05:00

194 lines
4.5 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "eec4efda",
"metadata": {},
"source": [
"# Self Hosted\n",
"Let's load the `SelfHostedEmbeddings`, `SelfHostedHuggingFaceEmbeddings`, and `SelfHostedHuggingFaceInstructEmbeddings` classes."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d338722a",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"import runhouse as rh\n",
"from langchain_community.embeddings import (\n",
" SelfHostedEmbeddings,\n",
" SelfHostedHuggingFaceEmbeddings,\n",
" SelfHostedHuggingFaceInstructEmbeddings,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "146559e8",
"metadata": {},
"outputs": [],
"source": [
"# For an on-demand A100 with GCP, Azure, or Lambda\n",
"gpu = rh.cluster(name=\"rh-a10x\", instance_type=\"A100:1\", use_spot=False)\n",
"\n",
"# For an on-demand A10G with AWS (no single A100s on AWS)\n",
"# gpu = rh.cluster(name='rh-a10x', instance_type='g5.2xlarge', provider='aws')\n",
"\n",
"# For an existing cluster\n",
"# gpu = rh.cluster(ips=['<ip of the cluster>'],\n",
"# ssh_creds={'ssh_user': '...', 'ssh_private_key':'<path_to_key>'},\n",
"# name='my-cluster')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1230f7df",
"metadata": {},
"outputs": [],
"source": [
"embeddings = SelfHostedHuggingFaceEmbeddings(hardware=gpu)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "2684e928",
"metadata": {},
"outputs": [],
"source": [
"text = \"This is a test document.\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1dc5e606",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"query_result = embeddings.embed_query(text)"
]
},
{
"cell_type": "markdown",
"id": "cef9cc54",
"metadata": {},
"source": [
"And similarly for SelfHostedHuggingFaceInstructEmbeddings:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "81a17ca3",
"metadata": {},
"outputs": [],
"source": [
"embeddings = SelfHostedHuggingFaceInstructEmbeddings(hardware=gpu)"
]
},
{
"cell_type": "markdown",
"id": "5a33d1c8",
"metadata": {},
"source": [
"Now let's load an embedding model with a custom load function:"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "c4af5679",
"metadata": {},
"outputs": [],
"source": [
"def get_pipeline():\n",
" from transformers import (\n",
" AutoModelForCausalLM,\n",
" AutoTokenizer,\n",
" pipeline,\n",
" )\n",
"\n",
" model_id = \"facebook/bart-base\"\n",
" tokenizer = AutoTokenizer.from_pretrained(model_id)\n",
" model = AutoModelForCausalLM.from_pretrained(model_id)\n",
" return pipeline(\"feature-extraction\", model=model, tokenizer=tokenizer)\n",
"\n",
"\n",
"def inference_fn(pipeline, prompt):\n",
" # Return last hidden state of the model\n",
" if isinstance(prompt, list):\n",
" return [emb[0][-1] for emb in pipeline(prompt)]\n",
" return pipeline(prompt)[0][-1]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8654334b",
"metadata": {},
"outputs": [],
"source": [
"embeddings = SelfHostedEmbeddings(\n",
" model_load_fn=get_pipeline,\n",
" hardware=gpu,\n",
" model_reqs=[\"./\", \"torch\", \"transformers\"],\n",
" inference_fn=inference_fn,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fc1bfd0f",
"metadata": {},
"outputs": [],
"source": [
"query_result = embeddings.embed_query(text)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "aaad49f8",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
},
"vscode": {
"interpreter": {
"hash": "7377c2ccc78bc62c2683122d48c8cd1fb85a53850a1b1fc29736ed39852c9885"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}