mirror of
https://github.com/hwchase17/langchain.git
synced 2025-04-27 19:46:55 +00:00
863 lines
38 KiB
Python
863 lines
38 KiB
Python
"""Test ChatAnthropic chat model."""
|
|
|
|
import json
|
|
from base64 import b64encode
|
|
from typing import List, Optional
|
|
|
|
import httpx
|
|
import pytest
|
|
import requests
|
|
from anthropic import BadRequestError
|
|
from langchain_core.callbacks import CallbackManager
|
|
from langchain_core.exceptions import OutputParserException
|
|
from langchain_core.messages import (
|
|
AIMessage,
|
|
AIMessageChunk,
|
|
BaseMessage,
|
|
BaseMessageChunk,
|
|
HumanMessage,
|
|
SystemMessage,
|
|
ToolMessage,
|
|
)
|
|
from langchain_core.outputs import ChatGeneration, LLMResult
|
|
from langchain_core.prompts import ChatPromptTemplate
|
|
from langchain_core.tools import tool
|
|
from pydantic import BaseModel, Field
|
|
|
|
from langchain_anthropic import ChatAnthropic, ChatAnthropicMessages
|
|
from tests.unit_tests._utils import FakeCallbackHandler
|
|
|
|
MODEL_NAME = "claude-3-5-haiku-latest"
|
|
IMAGE_MODEL_NAME = "claude-3-5-sonnet-latest"
|
|
|
|
|
|
def test_stream() -> None:
|
|
"""Test streaming tokens from Anthropic."""
|
|
llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
|
|
|
|
full: Optional[BaseMessageChunk] = None
|
|
chunks_with_input_token_counts = 0
|
|
chunks_with_output_token_counts = 0
|
|
chunks_with_model_name = 0
|
|
for token in llm.stream("I'm Pickle Rick"):
|
|
assert isinstance(token.content, str)
|
|
full = token if full is None else full + token
|
|
assert isinstance(token, AIMessageChunk)
|
|
if token.usage_metadata is not None:
|
|
if token.usage_metadata.get("input_tokens"):
|
|
chunks_with_input_token_counts += 1
|
|
elif token.usage_metadata.get("output_tokens"):
|
|
chunks_with_output_token_counts += 1
|
|
chunks_with_model_name += int("model_name" in token.response_metadata)
|
|
if chunks_with_input_token_counts != 1 or chunks_with_output_token_counts != 1:
|
|
raise AssertionError(
|
|
"Expected exactly one chunk with input or output token counts. "
|
|
"AIMessageChunk aggregation adds counts. Check that "
|
|
"this is behaving properly."
|
|
)
|
|
assert chunks_with_model_name == 1
|
|
# check token usage is populated
|
|
assert isinstance(full, AIMessageChunk)
|
|
assert full.usage_metadata is not None
|
|
assert full.usage_metadata["input_tokens"] > 0
|
|
assert full.usage_metadata["output_tokens"] > 0
|
|
assert full.usage_metadata["total_tokens"] > 0
|
|
assert (
|
|
full.usage_metadata["input_tokens"] + full.usage_metadata["output_tokens"]
|
|
== full.usage_metadata["total_tokens"]
|
|
)
|
|
assert "stop_reason" in full.response_metadata
|
|
assert "stop_sequence" in full.response_metadata
|
|
assert "model_name" in full.response_metadata
|
|
|
|
|
|
async def test_astream() -> None:
|
|
"""Test streaming tokens from Anthropic."""
|
|
llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
|
|
|
|
full: Optional[BaseMessageChunk] = None
|
|
chunks_with_input_token_counts = 0
|
|
chunks_with_output_token_counts = 0
|
|
async for token in llm.astream("I'm Pickle Rick"):
|
|
assert isinstance(token.content, str)
|
|
full = token if full is None else full + token
|
|
assert isinstance(token, AIMessageChunk)
|
|
if token.usage_metadata is not None:
|
|
if token.usage_metadata.get("input_tokens"):
|
|
chunks_with_input_token_counts += 1
|
|
elif token.usage_metadata.get("output_tokens"):
|
|
chunks_with_output_token_counts += 1
|
|
if chunks_with_input_token_counts != 1 or chunks_with_output_token_counts != 1:
|
|
raise AssertionError(
|
|
"Expected exactly one chunk with input or output token counts. "
|
|
"AIMessageChunk aggregation adds counts. Check that "
|
|
"this is behaving properly."
|
|
)
|
|
# check token usage is populated
|
|
assert isinstance(full, AIMessageChunk)
|
|
assert full.usage_metadata is not None
|
|
assert full.usage_metadata["input_tokens"] > 0
|
|
assert full.usage_metadata["output_tokens"] > 0
|
|
assert full.usage_metadata["total_tokens"] > 0
|
|
assert (
|
|
full.usage_metadata["input_tokens"] + full.usage_metadata["output_tokens"]
|
|
== full.usage_metadata["total_tokens"]
|
|
)
|
|
assert "stop_reason" in full.response_metadata
|
|
assert "stop_sequence" in full.response_metadata
|
|
|
|
# Check expected raw API output
|
|
async_client = llm._async_client
|
|
params: dict = {
|
|
"model": MODEL_NAME,
|
|
"max_tokens": 1024,
|
|
"messages": [{"role": "user", "content": "hi"}],
|
|
"temperature": 0.0,
|
|
}
|
|
stream = await async_client.messages.create(**params, stream=True)
|
|
async for event in stream:
|
|
if event.type == "message_start":
|
|
assert event.message.usage.input_tokens > 1
|
|
# Note: this single output token included in message start event
|
|
# does not appear to contribute to overall output token counts. It
|
|
# is excluded from the total token count.
|
|
assert event.message.usage.output_tokens == 1
|
|
elif event.type == "message_delta":
|
|
assert event.usage.output_tokens > 1
|
|
else:
|
|
pass
|
|
|
|
|
|
async def test_stream_usage() -> None:
|
|
"""Test usage metadata can be excluded."""
|
|
model = ChatAnthropic(model_name=MODEL_NAME, stream_usage=False) # type: ignore[call-arg]
|
|
async for token in model.astream("hi"):
|
|
assert isinstance(token, AIMessageChunk)
|
|
assert token.usage_metadata is None
|
|
# check we override with kwarg
|
|
model = ChatAnthropic(model_name=MODEL_NAME) # type: ignore[call-arg]
|
|
assert model.stream_usage
|
|
async for token in model.astream("hi", stream_usage=False):
|
|
assert isinstance(token, AIMessageChunk)
|
|
assert token.usage_metadata is None
|
|
|
|
|
|
async def test_abatch() -> None:
|
|
"""Test streaming tokens from ChatAnthropicMessages."""
|
|
llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
|
|
|
|
result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"])
|
|
for token in result:
|
|
assert isinstance(token.content, str)
|
|
|
|
|
|
async def test_abatch_tags() -> None:
|
|
"""Test batch tokens from ChatAnthropicMessages."""
|
|
llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
|
|
|
|
result = await llm.abatch(
|
|
["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]}
|
|
)
|
|
for token in result:
|
|
assert isinstance(token.content, str)
|
|
|
|
|
|
async def test_async_tool_use() -> None:
|
|
llm = ChatAnthropic(
|
|
model=MODEL_NAME,
|
|
)
|
|
|
|
llm_with_tools = llm.bind_tools(
|
|
[
|
|
{
|
|
"name": "get_weather",
|
|
"description": "Get weather report for a city",
|
|
"input_schema": {
|
|
"type": "object",
|
|
"properties": {"location": {"type": "string"}},
|
|
},
|
|
}
|
|
]
|
|
)
|
|
response = await llm_with_tools.ainvoke("what's the weather in san francisco, ca")
|
|
assert isinstance(response, AIMessage)
|
|
assert isinstance(response.content, list)
|
|
assert isinstance(response.tool_calls, list)
|
|
assert len(response.tool_calls) == 1
|
|
tool_call = response.tool_calls[0]
|
|
assert tool_call["name"] == "get_weather"
|
|
assert isinstance(tool_call["args"], dict)
|
|
assert "location" in tool_call["args"]
|
|
|
|
# Test streaming
|
|
first = True
|
|
chunks = [] # type: ignore
|
|
async for chunk in llm_with_tools.astream(
|
|
"what's the weather in san francisco, ca"
|
|
):
|
|
chunks = chunks + [chunk]
|
|
if first:
|
|
gathered = chunk
|
|
first = False
|
|
else:
|
|
gathered = gathered + chunk # type: ignore
|
|
assert len(chunks) > 1
|
|
assert isinstance(gathered, AIMessageChunk)
|
|
assert isinstance(gathered.tool_call_chunks, list)
|
|
assert len(gathered.tool_call_chunks) == 1
|
|
tool_call_chunk = gathered.tool_call_chunks[0]
|
|
assert tool_call_chunk["name"] == "get_weather"
|
|
assert isinstance(tool_call_chunk["args"], str)
|
|
assert "location" in json.loads(tool_call_chunk["args"])
|
|
|
|
|
|
def test_batch() -> None:
|
|
"""Test batch tokens from ChatAnthropicMessages."""
|
|
llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
|
|
|
|
result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"])
|
|
for token in result:
|
|
assert isinstance(token.content, str)
|
|
|
|
|
|
async def test_ainvoke() -> None:
|
|
"""Test invoke tokens from ChatAnthropicMessages."""
|
|
llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
|
|
|
|
result = await llm.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]})
|
|
assert isinstance(result.content, str)
|
|
assert "model_name" in result.response_metadata
|
|
|
|
|
|
def test_invoke() -> None:
|
|
"""Test invoke tokens from ChatAnthropicMessages."""
|
|
llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
|
|
|
|
result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"]))
|
|
assert isinstance(result.content, str)
|
|
|
|
|
|
def test_system_invoke() -> None:
|
|
"""Test invoke tokens with a system message"""
|
|
llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
|
|
|
|
prompt = ChatPromptTemplate.from_messages(
|
|
[
|
|
(
|
|
"system",
|
|
"You are an expert cartographer. If asked, you are a cartographer. "
|
|
"STAY IN CHARACTER",
|
|
),
|
|
("human", "Are you a mathematician?"),
|
|
]
|
|
)
|
|
|
|
chain = prompt | llm
|
|
|
|
result = chain.invoke({})
|
|
assert isinstance(result.content, str)
|
|
|
|
|
|
def test_anthropic_call() -> None:
|
|
"""Test valid call to anthropic."""
|
|
chat = ChatAnthropic(model=MODEL_NAME)
|
|
message = HumanMessage(content="Hello")
|
|
response = chat.invoke([message])
|
|
assert isinstance(response, AIMessage)
|
|
assert isinstance(response.content, str)
|
|
|
|
|
|
def test_anthropic_generate() -> None:
|
|
"""Test generate method of anthropic."""
|
|
chat = ChatAnthropic(model=MODEL_NAME)
|
|
chat_messages: List[List[BaseMessage]] = [
|
|
[HumanMessage(content="How many toes do dogs have?")]
|
|
]
|
|
messages_copy = [messages.copy() for messages in chat_messages]
|
|
result: LLMResult = chat.generate(chat_messages)
|
|
assert isinstance(result, LLMResult)
|
|
for response in result.generations[0]:
|
|
assert isinstance(response, ChatGeneration)
|
|
assert isinstance(response.text, str)
|
|
assert response.text == response.message.content
|
|
assert chat_messages == messages_copy
|
|
|
|
|
|
def test_anthropic_streaming() -> None:
|
|
"""Test streaming tokens from anthropic."""
|
|
chat = ChatAnthropic(model=MODEL_NAME)
|
|
message = HumanMessage(content="Hello")
|
|
response = chat.stream([message])
|
|
for token in response:
|
|
assert isinstance(token, AIMessageChunk)
|
|
assert isinstance(token.content, str)
|
|
|
|
|
|
def test_anthropic_streaming_callback() -> None:
|
|
"""Test that streaming correctly invokes on_llm_new_token callback."""
|
|
callback_handler = FakeCallbackHandler()
|
|
callback_manager = CallbackManager([callback_handler])
|
|
chat = ChatAnthropic(
|
|
model=MODEL_NAME,
|
|
callback_manager=callback_manager,
|
|
verbose=True,
|
|
)
|
|
message = HumanMessage(content="Write me a sentence with 10 words.")
|
|
for token in chat.stream([message]):
|
|
assert isinstance(token, AIMessageChunk)
|
|
assert isinstance(token.content, str)
|
|
assert callback_handler.llm_streams > 1
|
|
|
|
|
|
async def test_anthropic_async_streaming_callback() -> None:
|
|
"""Test that streaming correctly invokes on_llm_new_token callback."""
|
|
callback_handler = FakeCallbackHandler()
|
|
callback_manager = CallbackManager([callback_handler])
|
|
chat = ChatAnthropic(
|
|
model=MODEL_NAME,
|
|
callback_manager=callback_manager,
|
|
verbose=True,
|
|
)
|
|
chat_messages: List[BaseMessage] = [
|
|
HumanMessage(content="How many toes do dogs have?")
|
|
]
|
|
async for token in chat.astream(chat_messages):
|
|
assert isinstance(token, AIMessageChunk)
|
|
assert isinstance(token.content, str)
|
|
assert callback_handler.llm_streams > 1
|
|
|
|
|
|
def test_anthropic_multimodal() -> None:
|
|
"""Test that multimodal inputs are handled correctly."""
|
|
chat = ChatAnthropic(model=IMAGE_MODEL_NAME)
|
|
messages: list[BaseMessage] = [
|
|
HumanMessage(
|
|
content=[
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {
|
|
# langchain logo
|
|
"url": "", # noqa: E501
|
|
},
|
|
},
|
|
{"type": "text", "text": "What is this a logo for?"},
|
|
]
|
|
)
|
|
]
|
|
response = chat.invoke(messages)
|
|
assert isinstance(response, AIMessage)
|
|
assert isinstance(response.content, str)
|
|
num_tokens = chat.get_num_tokens_from_messages(messages)
|
|
assert num_tokens > 0
|
|
|
|
|
|
def test_streaming() -> None:
|
|
"""Test streaming tokens from Anthropic."""
|
|
callback_handler = FakeCallbackHandler()
|
|
callback_manager = CallbackManager([callback_handler])
|
|
|
|
llm = ChatAnthropicMessages( # type: ignore[call-arg, call-arg]
|
|
model_name=MODEL_NAME, streaming=True, callback_manager=callback_manager
|
|
)
|
|
|
|
response = llm.generate([[HumanMessage(content="I'm Pickle Rick")]])
|
|
assert callback_handler.llm_streams > 0
|
|
assert isinstance(response, LLMResult)
|
|
|
|
|
|
async def test_astreaming() -> None:
|
|
"""Test streaming tokens from Anthropic."""
|
|
callback_handler = FakeCallbackHandler()
|
|
callback_manager = CallbackManager([callback_handler])
|
|
|
|
llm = ChatAnthropicMessages( # type: ignore[call-arg, call-arg]
|
|
model_name=MODEL_NAME, streaming=True, callback_manager=callback_manager
|
|
)
|
|
|
|
response = await llm.agenerate([[HumanMessage(content="I'm Pickle Rick")]])
|
|
assert callback_handler.llm_streams > 0
|
|
assert isinstance(response, LLMResult)
|
|
|
|
|
|
def test_tool_use() -> None:
|
|
llm = ChatAnthropic(
|
|
model="claude-3-7-sonnet-20250219",
|
|
temperature=0,
|
|
)
|
|
tool_definition = {
|
|
"name": "get_weather",
|
|
"description": "Get weather report for a city",
|
|
"input_schema": {
|
|
"type": "object",
|
|
"properties": {"location": {"type": "string"}},
|
|
},
|
|
}
|
|
llm_with_tools = llm.bind_tools([tool_definition])
|
|
query = "how are you? what's the weather in san francisco, ca"
|
|
response = llm_with_tools.invoke(query)
|
|
assert isinstance(response, AIMessage)
|
|
assert isinstance(response.content, list)
|
|
assert isinstance(response.tool_calls, list)
|
|
assert len(response.tool_calls) == 1
|
|
tool_call = response.tool_calls[0]
|
|
assert tool_call["name"] == "get_weather"
|
|
assert isinstance(tool_call["args"], dict)
|
|
assert "location" in tool_call["args"]
|
|
|
|
# Test streaming
|
|
llm = ChatAnthropic(
|
|
model="claude-3-7-sonnet-20250219",
|
|
temperature=0,
|
|
# Add extra headers to also test token-efficient tools
|
|
model_kwargs={
|
|
"extra_headers": {"anthropic-beta": "token-efficient-tools-2025-02-19"}
|
|
},
|
|
)
|
|
llm_with_tools = llm.bind_tools([tool_definition])
|
|
first = True
|
|
chunks = [] # type: ignore
|
|
for chunk in llm_with_tools.stream(query):
|
|
chunks = chunks + [chunk]
|
|
if first:
|
|
gathered = chunk
|
|
first = False
|
|
else:
|
|
gathered = gathered + chunk # type: ignore
|
|
assert len(chunks) > 1
|
|
assert isinstance(gathered.content, list)
|
|
assert len(gathered.content) == 2
|
|
tool_use_block = None
|
|
for content_block in gathered.content:
|
|
assert isinstance(content_block, dict)
|
|
if content_block["type"] == "tool_use":
|
|
tool_use_block = content_block
|
|
break
|
|
assert tool_use_block is not None
|
|
assert tool_use_block["name"] == "get_weather"
|
|
assert "location" in json.loads(tool_use_block["partial_json"])
|
|
assert isinstance(gathered, AIMessageChunk)
|
|
assert isinstance(gathered.tool_calls, list)
|
|
assert len(gathered.tool_calls) == 1
|
|
tool_call = gathered.tool_calls[0]
|
|
assert tool_call["name"] == "get_weather"
|
|
assert isinstance(tool_call["args"], dict)
|
|
assert "location" in tool_call["args"]
|
|
assert tool_call["id"] is not None
|
|
|
|
# Testing token-efficient tools
|
|
# https://docs.anthropic.com/en/docs/build-with-claude/tool-use/token-efficient-tool-use
|
|
assert gathered.usage_metadata
|
|
assert response.usage_metadata
|
|
assert (
|
|
gathered.usage_metadata["total_tokens"]
|
|
< response.usage_metadata["total_tokens"]
|
|
)
|
|
|
|
# Test passing response back to model
|
|
stream = llm_with_tools.stream(
|
|
[
|
|
query,
|
|
gathered,
|
|
ToolMessage(content="sunny and warm", tool_call_id=tool_call["id"]),
|
|
]
|
|
)
|
|
chunks = [] # type: ignore
|
|
first = True
|
|
for chunk in stream:
|
|
chunks = chunks + [chunk]
|
|
if first:
|
|
gathered = chunk
|
|
first = False
|
|
else:
|
|
gathered = gathered + chunk # type: ignore
|
|
assert len(chunks) > 1
|
|
|
|
|
|
def test_builtin_tools() -> None:
|
|
llm = ChatAnthropic(model="claude-3-7-sonnet-20250219")
|
|
tool = {"type": "text_editor_20250124", "name": "str_replace_editor"}
|
|
llm_with_tools = llm.bind_tools([tool])
|
|
response = llm_with_tools.invoke(
|
|
"There's a syntax error in my primes.py file. Can you help me fix it?"
|
|
)
|
|
assert isinstance(response, AIMessage)
|
|
assert response.tool_calls
|
|
|
|
|
|
class GenerateUsername(BaseModel):
|
|
"Get a username based on someone's name and hair color."
|
|
|
|
name: str
|
|
hair_color: str
|
|
|
|
|
|
def test_disable_parallel_tool_calling() -> None:
|
|
llm = ChatAnthropic(model="claude-3-5-sonnet-20241022")
|
|
llm_with_tools = llm.bind_tools([GenerateUsername], parallel_tool_calls=False)
|
|
result = llm_with_tools.invoke(
|
|
"Use the GenerateUsername tool to generate user names for:\n\n"
|
|
"Sally with green hair\n"
|
|
"Bob with blue hair"
|
|
)
|
|
assert isinstance(result, AIMessage)
|
|
assert len(result.tool_calls) == 1
|
|
|
|
|
|
def test_anthropic_with_empty_text_block() -> None:
|
|
"""Anthropic SDK can return an empty text block."""
|
|
|
|
@tool
|
|
def type_letter(letter: str) -> str:
|
|
"""Type the given letter."""
|
|
return "OK"
|
|
|
|
model = ChatAnthropic(model="claude-3-opus-20240229", temperature=0).bind_tools(
|
|
[type_letter]
|
|
)
|
|
|
|
messages = [
|
|
SystemMessage(
|
|
content="Repeat the given string using the provided tools. Do not write "
|
|
"anything else or provide any explanations. For example, "
|
|
"if the string is 'abc', you must print the "
|
|
"letters 'a', 'b', and 'c' one at a time and in that order. "
|
|
),
|
|
HumanMessage(content="dog"),
|
|
AIMessage(
|
|
content=[
|
|
{"text": "", "type": "text"},
|
|
{
|
|
"id": "toolu_01V6d6W32QGGSmQm4BT98EKk",
|
|
"input": {"letter": "d"},
|
|
"name": "type_letter",
|
|
"type": "tool_use",
|
|
},
|
|
],
|
|
tool_calls=[
|
|
{
|
|
"name": "type_letter",
|
|
"args": {"letter": "d"},
|
|
"id": "toolu_01V6d6W32QGGSmQm4BT98EKk",
|
|
"type": "tool_call",
|
|
},
|
|
],
|
|
),
|
|
ToolMessage(content="OK", tool_call_id="toolu_01V6d6W32QGGSmQm4BT98EKk"),
|
|
]
|
|
|
|
model.invoke(messages)
|
|
|
|
|
|
def test_with_structured_output() -> None:
|
|
llm = ChatAnthropic(
|
|
model="claude-3-opus-20240229",
|
|
)
|
|
|
|
structured_llm = llm.with_structured_output(
|
|
{
|
|
"name": "get_weather",
|
|
"description": "Get weather report for a city",
|
|
"input_schema": {
|
|
"type": "object",
|
|
"properties": {"location": {"type": "string"}},
|
|
},
|
|
}
|
|
)
|
|
response = structured_llm.invoke("what's the weather in san francisco, ca")
|
|
assert isinstance(response, dict)
|
|
assert response["location"]
|
|
|
|
|
|
def test_get_num_tokens_from_messages() -> None:
|
|
llm = ChatAnthropic(model="claude-3-5-sonnet-20241022")
|
|
|
|
# Test simple case
|
|
messages = [
|
|
SystemMessage(content="You are a scientist"),
|
|
HumanMessage(content="Hello, Claude"),
|
|
]
|
|
num_tokens = llm.get_num_tokens_from_messages(messages)
|
|
assert num_tokens > 0
|
|
|
|
# Test tool use
|
|
@tool(parse_docstring=True)
|
|
def get_weather(location: str) -> str:
|
|
"""Get the current weather in a given location
|
|
|
|
Args:
|
|
location: The city and state, e.g. San Francisco, CA
|
|
"""
|
|
return "Sunny"
|
|
|
|
messages = [
|
|
HumanMessage(content="What's the weather like in San Francisco?"),
|
|
]
|
|
num_tokens = llm.get_num_tokens_from_messages(messages, tools=[get_weather])
|
|
assert num_tokens > 0
|
|
|
|
messages = [
|
|
HumanMessage(content="What's the weather like in San Francisco?"),
|
|
AIMessage(
|
|
content=[
|
|
{"text": "Let's see.", "type": "text"},
|
|
{
|
|
"id": "toolu_01V6d6W32QGGSmQm4BT98EKk",
|
|
"input": {"location": "SF"},
|
|
"name": "get_weather",
|
|
"type": "tool_use",
|
|
},
|
|
],
|
|
tool_calls=[
|
|
{
|
|
"name": "get_weather",
|
|
"args": {"location": "SF"},
|
|
"id": "toolu_01V6d6W32QGGSmQm4BT98EKk",
|
|
"type": "tool_call",
|
|
},
|
|
],
|
|
),
|
|
ToolMessage(content="Sunny", tool_call_id="toolu_01V6d6W32QGGSmQm4BT98EKk"),
|
|
]
|
|
num_tokens = llm.get_num_tokens_from_messages(messages, tools=[get_weather])
|
|
assert num_tokens > 0
|
|
|
|
|
|
class GetWeather(BaseModel):
|
|
"""Get the current weather in a given location"""
|
|
|
|
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
|
|
|
|
|
|
@pytest.mark.parametrize("tool_choice", ["GetWeather", "auto", "any"])
|
|
def test_anthropic_bind_tools_tool_choice(tool_choice: str) -> None:
|
|
chat_model = ChatAnthropic(
|
|
model=MODEL_NAME,
|
|
)
|
|
chat_model_with_tools = chat_model.bind_tools([GetWeather], tool_choice=tool_choice)
|
|
response = chat_model_with_tools.invoke("what's the weather in ny and la")
|
|
assert isinstance(response, AIMessage)
|
|
|
|
|
|
def test_pdf_document_input() -> None:
|
|
url = "https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf"
|
|
data = b64encode(requests.get(url).content).decode()
|
|
|
|
result = ChatAnthropic(model=IMAGE_MODEL_NAME).invoke(
|
|
[
|
|
HumanMessage(
|
|
[
|
|
"summarize this document",
|
|
{
|
|
"type": "document",
|
|
"source": {
|
|
"type": "base64",
|
|
"data": data,
|
|
"media_type": "application/pdf",
|
|
},
|
|
},
|
|
]
|
|
)
|
|
]
|
|
)
|
|
assert isinstance(result, AIMessage)
|
|
assert isinstance(result.content, str)
|
|
assert len(result.content) > 0
|
|
|
|
|
|
def test_citations() -> None:
|
|
llm = ChatAnthropic(model="claude-3-5-haiku-latest")
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "document",
|
|
"source": {
|
|
"type": "content",
|
|
"content": [
|
|
{"type": "text", "text": "The grass is green"},
|
|
{"type": "text", "text": "The sky is blue"},
|
|
],
|
|
},
|
|
"citations": {"enabled": True},
|
|
},
|
|
{"type": "text", "text": "What color is the grass and sky?"},
|
|
],
|
|
}
|
|
]
|
|
response = llm.invoke(messages)
|
|
assert isinstance(response, AIMessage)
|
|
assert isinstance(response.content, list)
|
|
assert any("citations" in block for block in response.content)
|
|
|
|
# Test streaming
|
|
full: Optional[BaseMessageChunk] = None
|
|
for chunk in llm.stream(messages):
|
|
full = chunk if full is None else full + chunk
|
|
assert isinstance(full, AIMessageChunk)
|
|
assert isinstance(full.content, list)
|
|
assert any("citations" in block for block in full.content)
|
|
assert not any("citation" in block for block in full.content)
|
|
|
|
|
|
def test_thinking() -> None:
|
|
llm = ChatAnthropic(
|
|
model="claude-3-7-sonnet-latest",
|
|
max_tokens=5_000,
|
|
thinking={"type": "enabled", "budget_tokens": 2_000},
|
|
)
|
|
response = llm.invoke("Hello")
|
|
assert any("thinking" in block for block in response.content)
|
|
for block in response.content:
|
|
assert isinstance(block, dict)
|
|
if block["type"] == "thinking":
|
|
assert set(block.keys()) == {"type", "thinking", "signature"}
|
|
assert block["thinking"] and isinstance(block["thinking"], str)
|
|
assert block["signature"] and isinstance(block["signature"], str)
|
|
|
|
# Test streaming
|
|
full: Optional[BaseMessageChunk] = None
|
|
for chunk in llm.stream("Hello"):
|
|
full = chunk if full is None else full + chunk
|
|
assert isinstance(full, AIMessageChunk)
|
|
assert isinstance(full.content, list)
|
|
assert any("thinking" in block for block in full.content)
|
|
for block in full.content:
|
|
assert isinstance(block, dict)
|
|
if block["type"] == "thinking":
|
|
assert set(block.keys()) == {"type", "thinking", "signature", "index"}
|
|
assert block["thinking"] and isinstance(block["thinking"], str)
|
|
assert block["signature"] and isinstance(block["signature"], str)
|
|
|
|
|
|
@pytest.mark.flaky(retries=3, delay=1)
|
|
def test_redacted_thinking() -> None:
|
|
llm = ChatAnthropic(
|
|
model="claude-3-7-sonnet-latest",
|
|
max_tokens=5_000,
|
|
thinking={"type": "enabled", "budget_tokens": 2_000},
|
|
)
|
|
query = "ANTHROPIC_MAGIC_STRING_TRIGGER_REDACTED_THINKING_46C9A13E193C177646C7398A98432ECCCE4C1253D5E2D82641AC0E52CC2876CB" # noqa: E501
|
|
|
|
response = llm.invoke(query)
|
|
has_reasoning = False
|
|
for block in response.content:
|
|
assert isinstance(block, dict)
|
|
if block["type"] == "redacted_thinking":
|
|
has_reasoning = True
|
|
assert set(block.keys()) == {"type", "data"}
|
|
assert block["data"] and isinstance(block["data"], str)
|
|
assert has_reasoning
|
|
|
|
# Test streaming
|
|
full: Optional[BaseMessageChunk] = None
|
|
for chunk in llm.stream(query):
|
|
full = chunk if full is None else full + chunk
|
|
assert isinstance(full, AIMessageChunk)
|
|
assert isinstance(full.content, list)
|
|
stream_has_reasoning = False
|
|
for block in full.content:
|
|
assert isinstance(block, dict)
|
|
if block["type"] == "redacted_thinking":
|
|
stream_has_reasoning = True
|
|
assert set(block.keys()) == {"type", "data", "index"}
|
|
assert block["data"] and isinstance(block["data"], str)
|
|
assert stream_has_reasoning
|
|
|
|
|
|
def test_structured_output_thinking_enabled() -> None:
|
|
llm = ChatAnthropic(
|
|
model="claude-3-7-sonnet-latest",
|
|
max_tokens=5_000,
|
|
thinking={"type": "enabled", "budget_tokens": 2_000},
|
|
)
|
|
with pytest.warns(match="structured output"):
|
|
structured_llm = llm.with_structured_output(GenerateUsername)
|
|
query = "Generate a username for Sally with green hair"
|
|
response = structured_llm.invoke(query)
|
|
assert isinstance(response, GenerateUsername)
|
|
|
|
with pytest.raises(OutputParserException):
|
|
structured_llm.invoke("Hello")
|
|
|
|
# Test streaming
|
|
for chunk in structured_llm.stream(query):
|
|
assert isinstance(chunk, GenerateUsername)
|
|
|
|
|
|
def test_structured_output_thinking_force_tool_use() -> None:
|
|
# Structured output currently relies on forced tool use, which is not supported
|
|
# when `thinking` is enabled. When this test fails, it means that the feature
|
|
# is supported and the workarounds in `with_structured_output` should be removed.
|
|
llm = ChatAnthropic(
|
|
model="claude-3-7-sonnet-latest",
|
|
max_tokens=5_000,
|
|
thinking={"type": "enabled", "budget_tokens": 2_000},
|
|
).bind_tools(
|
|
[GenerateUsername],
|
|
tool_choice="GenerateUsername",
|
|
)
|
|
with pytest.raises(BadRequestError):
|
|
llm.invoke("Generate a username for Sally with green hair")
|
|
|
|
|
|
def test_image_tool_calling() -> None:
|
|
"""Test tool calling with image inputs."""
|
|
|
|
class color_picker(BaseModel):
|
|
"""Input your fav color and get a random fact about it."""
|
|
|
|
fav_color: str
|
|
|
|
human_content: List[dict] = [
|
|
{
|
|
"type": "text",
|
|
"text": "what's your favorite color in this image",
|
|
},
|
|
]
|
|
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
|
|
image_data = b64encode(httpx.get(image_url).content).decode("utf-8")
|
|
human_content.append(
|
|
{
|
|
"type": "image",
|
|
"source": {
|
|
"type": "base64",
|
|
"media_type": "image/jpeg",
|
|
"data": image_data,
|
|
},
|
|
}
|
|
)
|
|
messages = [
|
|
SystemMessage("you're a good assistant"),
|
|
HumanMessage(human_content), # type: ignore[arg-type]
|
|
AIMessage(
|
|
[
|
|
{"type": "text", "text": "Hmm let me think about that"},
|
|
{
|
|
"type": "tool_use",
|
|
"input": {"fav_color": "green"},
|
|
"id": "foo",
|
|
"name": "color_picker",
|
|
},
|
|
]
|
|
),
|
|
HumanMessage(
|
|
[
|
|
{
|
|
"type": "tool_result",
|
|
"tool_use_id": "foo",
|
|
"content": [
|
|
{
|
|
"type": "text",
|
|
"text": "green is a great pick! that's my sister's favorite color", # noqa: E501
|
|
}
|
|
],
|
|
"is_error": False,
|
|
},
|
|
{"type": "text", "text": "what's my sister's favorite color"},
|
|
]
|
|
),
|
|
]
|
|
llm = ChatAnthropic(model="claude-3-5-sonnet-latest")
|
|
llm.bind_tools([color_picker]).invoke(messages)
|