langchain/libs/partners/anthropic/tests/integration_tests/test_chat_models.py
2025-03-26 13:28:56 -04:00

863 lines
38 KiB
Python

"""Test ChatAnthropic chat model."""
import json
from base64 import b64encode
from typing import List, Optional
import httpx
import pytest
import requests
from anthropic import BadRequestError
from langchain_core.callbacks import CallbackManager
from langchain_core.exceptions import OutputParserException
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
BaseMessageChunk,
HumanMessage,
SystemMessage,
ToolMessage,
)
from langchain_core.outputs import ChatGeneration, LLMResult
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.tools import tool
from pydantic import BaseModel, Field
from langchain_anthropic import ChatAnthropic, ChatAnthropicMessages
from tests.unit_tests._utils import FakeCallbackHandler
MODEL_NAME = "claude-3-5-haiku-latest"
IMAGE_MODEL_NAME = "claude-3-5-sonnet-latest"
def test_stream() -> None:
"""Test streaming tokens from Anthropic."""
llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
full: Optional[BaseMessageChunk] = None
chunks_with_input_token_counts = 0
chunks_with_output_token_counts = 0
chunks_with_model_name = 0
for token in llm.stream("I'm Pickle Rick"):
assert isinstance(token.content, str)
full = token if full is None else full + token
assert isinstance(token, AIMessageChunk)
if token.usage_metadata is not None:
if token.usage_metadata.get("input_tokens"):
chunks_with_input_token_counts += 1
elif token.usage_metadata.get("output_tokens"):
chunks_with_output_token_counts += 1
chunks_with_model_name += int("model_name" in token.response_metadata)
if chunks_with_input_token_counts != 1 or chunks_with_output_token_counts != 1:
raise AssertionError(
"Expected exactly one chunk with input or output token counts. "
"AIMessageChunk aggregation adds counts. Check that "
"this is behaving properly."
)
assert chunks_with_model_name == 1
# check token usage is populated
assert isinstance(full, AIMessageChunk)
assert full.usage_metadata is not None
assert full.usage_metadata["input_tokens"] > 0
assert full.usage_metadata["output_tokens"] > 0
assert full.usage_metadata["total_tokens"] > 0
assert (
full.usage_metadata["input_tokens"] + full.usage_metadata["output_tokens"]
== full.usage_metadata["total_tokens"]
)
assert "stop_reason" in full.response_metadata
assert "stop_sequence" in full.response_metadata
assert "model_name" in full.response_metadata
async def test_astream() -> None:
"""Test streaming tokens from Anthropic."""
llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
full: Optional[BaseMessageChunk] = None
chunks_with_input_token_counts = 0
chunks_with_output_token_counts = 0
async for token in llm.astream("I'm Pickle Rick"):
assert isinstance(token.content, str)
full = token if full is None else full + token
assert isinstance(token, AIMessageChunk)
if token.usage_metadata is not None:
if token.usage_metadata.get("input_tokens"):
chunks_with_input_token_counts += 1
elif token.usage_metadata.get("output_tokens"):
chunks_with_output_token_counts += 1
if chunks_with_input_token_counts != 1 or chunks_with_output_token_counts != 1:
raise AssertionError(
"Expected exactly one chunk with input or output token counts. "
"AIMessageChunk aggregation adds counts. Check that "
"this is behaving properly."
)
# check token usage is populated
assert isinstance(full, AIMessageChunk)
assert full.usage_metadata is not None
assert full.usage_metadata["input_tokens"] > 0
assert full.usage_metadata["output_tokens"] > 0
assert full.usage_metadata["total_tokens"] > 0
assert (
full.usage_metadata["input_tokens"] + full.usage_metadata["output_tokens"]
== full.usage_metadata["total_tokens"]
)
assert "stop_reason" in full.response_metadata
assert "stop_sequence" in full.response_metadata
# Check expected raw API output
async_client = llm._async_client
params: dict = {
"model": MODEL_NAME,
"max_tokens": 1024,
"messages": [{"role": "user", "content": "hi"}],
"temperature": 0.0,
}
stream = await async_client.messages.create(**params, stream=True)
async for event in stream:
if event.type == "message_start":
assert event.message.usage.input_tokens > 1
# Note: this single output token included in message start event
# does not appear to contribute to overall output token counts. It
# is excluded from the total token count.
assert event.message.usage.output_tokens == 1
elif event.type == "message_delta":
assert event.usage.output_tokens > 1
else:
pass
async def test_stream_usage() -> None:
"""Test usage metadata can be excluded."""
model = ChatAnthropic(model_name=MODEL_NAME, stream_usage=False) # type: ignore[call-arg]
async for token in model.astream("hi"):
assert isinstance(token, AIMessageChunk)
assert token.usage_metadata is None
# check we override with kwarg
model = ChatAnthropic(model_name=MODEL_NAME) # type: ignore[call-arg]
assert model.stream_usage
async for token in model.astream("hi", stream_usage=False):
assert isinstance(token, AIMessageChunk)
assert token.usage_metadata is None
async def test_abatch() -> None:
"""Test streaming tokens from ChatAnthropicMessages."""
llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token.content, str)
async def test_abatch_tags() -> None:
"""Test batch tokens from ChatAnthropicMessages."""
llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
result = await llm.abatch(
["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]}
)
for token in result:
assert isinstance(token.content, str)
async def test_async_tool_use() -> None:
llm = ChatAnthropic(
model=MODEL_NAME,
)
llm_with_tools = llm.bind_tools(
[
{
"name": "get_weather",
"description": "Get weather report for a city",
"input_schema": {
"type": "object",
"properties": {"location": {"type": "string"}},
},
}
]
)
response = await llm_with_tools.ainvoke("what's the weather in san francisco, ca")
assert isinstance(response, AIMessage)
assert isinstance(response.content, list)
assert isinstance(response.tool_calls, list)
assert len(response.tool_calls) == 1
tool_call = response.tool_calls[0]
assert tool_call["name"] == "get_weather"
assert isinstance(tool_call["args"], dict)
assert "location" in tool_call["args"]
# Test streaming
first = True
chunks = [] # type: ignore
async for chunk in llm_with_tools.astream(
"what's the weather in san francisco, ca"
):
chunks = chunks + [chunk]
if first:
gathered = chunk
first = False
else:
gathered = gathered + chunk # type: ignore
assert len(chunks) > 1
assert isinstance(gathered, AIMessageChunk)
assert isinstance(gathered.tool_call_chunks, list)
assert len(gathered.tool_call_chunks) == 1
tool_call_chunk = gathered.tool_call_chunks[0]
assert tool_call_chunk["name"] == "get_weather"
assert isinstance(tool_call_chunk["args"], str)
assert "location" in json.loads(tool_call_chunk["args"])
def test_batch() -> None:
"""Test batch tokens from ChatAnthropicMessages."""
llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token.content, str)
async def test_ainvoke() -> None:
"""Test invoke tokens from ChatAnthropicMessages."""
llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
result = await llm.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]})
assert isinstance(result.content, str)
assert "model_name" in result.response_metadata
def test_invoke() -> None:
"""Test invoke tokens from ChatAnthropicMessages."""
llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"]))
assert isinstance(result.content, str)
def test_system_invoke() -> None:
"""Test invoke tokens with a system message"""
llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are an expert cartographer. If asked, you are a cartographer. "
"STAY IN CHARACTER",
),
("human", "Are you a mathematician?"),
]
)
chain = prompt | llm
result = chain.invoke({})
assert isinstance(result.content, str)
def test_anthropic_call() -> None:
"""Test valid call to anthropic."""
chat = ChatAnthropic(model=MODEL_NAME)
message = HumanMessage(content="Hello")
response = chat.invoke([message])
assert isinstance(response, AIMessage)
assert isinstance(response.content, str)
def test_anthropic_generate() -> None:
"""Test generate method of anthropic."""
chat = ChatAnthropic(model=MODEL_NAME)
chat_messages: List[List[BaseMessage]] = [
[HumanMessage(content="How many toes do dogs have?")]
]
messages_copy = [messages.copy() for messages in chat_messages]
result: LLMResult = chat.generate(chat_messages)
assert isinstance(result, LLMResult)
for response in result.generations[0]:
assert isinstance(response, ChatGeneration)
assert isinstance(response.text, str)
assert response.text == response.message.content
assert chat_messages == messages_copy
def test_anthropic_streaming() -> None:
"""Test streaming tokens from anthropic."""
chat = ChatAnthropic(model=MODEL_NAME)
message = HumanMessage(content="Hello")
response = chat.stream([message])
for token in response:
assert isinstance(token, AIMessageChunk)
assert isinstance(token.content, str)
def test_anthropic_streaming_callback() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
chat = ChatAnthropic(
model=MODEL_NAME,
callback_manager=callback_manager,
verbose=True,
)
message = HumanMessage(content="Write me a sentence with 10 words.")
for token in chat.stream([message]):
assert isinstance(token, AIMessageChunk)
assert isinstance(token.content, str)
assert callback_handler.llm_streams > 1
async def test_anthropic_async_streaming_callback() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
chat = ChatAnthropic(
model=MODEL_NAME,
callback_manager=callback_manager,
verbose=True,
)
chat_messages: List[BaseMessage] = [
HumanMessage(content="How many toes do dogs have?")
]
async for token in chat.astream(chat_messages):
assert isinstance(token, AIMessageChunk)
assert isinstance(token.content, str)
assert callback_handler.llm_streams > 1
def test_anthropic_multimodal() -> None:
"""Test that multimodal inputs are handled correctly."""
chat = ChatAnthropic(model=IMAGE_MODEL_NAME)
messages: list[BaseMessage] = [
HumanMessage(
content=[
{
"type": "image_url",
"image_url": {
# langchain logo
"url": "", # noqa: E501
},
},
{"type": "text", "text": "What is this a logo for?"},
]
)
]
response = chat.invoke(messages)
assert isinstance(response, AIMessage)
assert isinstance(response.content, str)
num_tokens = chat.get_num_tokens_from_messages(messages)
assert num_tokens > 0
def test_streaming() -> None:
"""Test streaming tokens from Anthropic."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
llm = ChatAnthropicMessages( # type: ignore[call-arg, call-arg]
model_name=MODEL_NAME, streaming=True, callback_manager=callback_manager
)
response = llm.generate([[HumanMessage(content="I'm Pickle Rick")]])
assert callback_handler.llm_streams > 0
assert isinstance(response, LLMResult)
async def test_astreaming() -> None:
"""Test streaming tokens from Anthropic."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
llm = ChatAnthropicMessages( # type: ignore[call-arg, call-arg]
model_name=MODEL_NAME, streaming=True, callback_manager=callback_manager
)
response = await llm.agenerate([[HumanMessage(content="I'm Pickle Rick")]])
assert callback_handler.llm_streams > 0
assert isinstance(response, LLMResult)
def test_tool_use() -> None:
llm = ChatAnthropic(
model="claude-3-7-sonnet-20250219",
temperature=0,
)
tool_definition = {
"name": "get_weather",
"description": "Get weather report for a city",
"input_schema": {
"type": "object",
"properties": {"location": {"type": "string"}},
},
}
llm_with_tools = llm.bind_tools([tool_definition])
query = "how are you? what's the weather in san francisco, ca"
response = llm_with_tools.invoke(query)
assert isinstance(response, AIMessage)
assert isinstance(response.content, list)
assert isinstance(response.tool_calls, list)
assert len(response.tool_calls) == 1
tool_call = response.tool_calls[0]
assert tool_call["name"] == "get_weather"
assert isinstance(tool_call["args"], dict)
assert "location" in tool_call["args"]
# Test streaming
llm = ChatAnthropic(
model="claude-3-7-sonnet-20250219",
temperature=0,
# Add extra headers to also test token-efficient tools
model_kwargs={
"extra_headers": {"anthropic-beta": "token-efficient-tools-2025-02-19"}
},
)
llm_with_tools = llm.bind_tools([tool_definition])
first = True
chunks = [] # type: ignore
for chunk in llm_with_tools.stream(query):
chunks = chunks + [chunk]
if first:
gathered = chunk
first = False
else:
gathered = gathered + chunk # type: ignore
assert len(chunks) > 1
assert isinstance(gathered.content, list)
assert len(gathered.content) == 2
tool_use_block = None
for content_block in gathered.content:
assert isinstance(content_block, dict)
if content_block["type"] == "tool_use":
tool_use_block = content_block
break
assert tool_use_block is not None
assert tool_use_block["name"] == "get_weather"
assert "location" in json.loads(tool_use_block["partial_json"])
assert isinstance(gathered, AIMessageChunk)
assert isinstance(gathered.tool_calls, list)
assert len(gathered.tool_calls) == 1
tool_call = gathered.tool_calls[0]
assert tool_call["name"] == "get_weather"
assert isinstance(tool_call["args"], dict)
assert "location" in tool_call["args"]
assert tool_call["id"] is not None
# Testing token-efficient tools
# https://docs.anthropic.com/en/docs/build-with-claude/tool-use/token-efficient-tool-use
assert gathered.usage_metadata
assert response.usage_metadata
assert (
gathered.usage_metadata["total_tokens"]
< response.usage_metadata["total_tokens"]
)
# Test passing response back to model
stream = llm_with_tools.stream(
[
query,
gathered,
ToolMessage(content="sunny and warm", tool_call_id=tool_call["id"]),
]
)
chunks = [] # type: ignore
first = True
for chunk in stream:
chunks = chunks + [chunk]
if first:
gathered = chunk
first = False
else:
gathered = gathered + chunk # type: ignore
assert len(chunks) > 1
def test_builtin_tools() -> None:
llm = ChatAnthropic(model="claude-3-7-sonnet-20250219")
tool = {"type": "text_editor_20250124", "name": "str_replace_editor"}
llm_with_tools = llm.bind_tools([tool])
response = llm_with_tools.invoke(
"There's a syntax error in my primes.py file. Can you help me fix it?"
)
assert isinstance(response, AIMessage)
assert response.tool_calls
class GenerateUsername(BaseModel):
"Get a username based on someone's name and hair color."
name: str
hair_color: str
def test_disable_parallel_tool_calling() -> None:
llm = ChatAnthropic(model="claude-3-5-sonnet-20241022")
llm_with_tools = llm.bind_tools([GenerateUsername], parallel_tool_calls=False)
result = llm_with_tools.invoke(
"Use the GenerateUsername tool to generate user names for:\n\n"
"Sally with green hair\n"
"Bob with blue hair"
)
assert isinstance(result, AIMessage)
assert len(result.tool_calls) == 1
def test_anthropic_with_empty_text_block() -> None:
"""Anthropic SDK can return an empty text block."""
@tool
def type_letter(letter: str) -> str:
"""Type the given letter."""
return "OK"
model = ChatAnthropic(model="claude-3-opus-20240229", temperature=0).bind_tools(
[type_letter]
)
messages = [
SystemMessage(
content="Repeat the given string using the provided tools. Do not write "
"anything else or provide any explanations. For example, "
"if the string is 'abc', you must print the "
"letters 'a', 'b', and 'c' one at a time and in that order. "
),
HumanMessage(content="dog"),
AIMessage(
content=[
{"text": "", "type": "text"},
{
"id": "toolu_01V6d6W32QGGSmQm4BT98EKk",
"input": {"letter": "d"},
"name": "type_letter",
"type": "tool_use",
},
],
tool_calls=[
{
"name": "type_letter",
"args": {"letter": "d"},
"id": "toolu_01V6d6W32QGGSmQm4BT98EKk",
"type": "tool_call",
},
],
),
ToolMessage(content="OK", tool_call_id="toolu_01V6d6W32QGGSmQm4BT98EKk"),
]
model.invoke(messages)
def test_with_structured_output() -> None:
llm = ChatAnthropic(
model="claude-3-opus-20240229",
)
structured_llm = llm.with_structured_output(
{
"name": "get_weather",
"description": "Get weather report for a city",
"input_schema": {
"type": "object",
"properties": {"location": {"type": "string"}},
},
}
)
response = structured_llm.invoke("what's the weather in san francisco, ca")
assert isinstance(response, dict)
assert response["location"]
def test_get_num_tokens_from_messages() -> None:
llm = ChatAnthropic(model="claude-3-5-sonnet-20241022")
# Test simple case
messages = [
SystemMessage(content="You are a scientist"),
HumanMessage(content="Hello, Claude"),
]
num_tokens = llm.get_num_tokens_from_messages(messages)
assert num_tokens > 0
# Test tool use
@tool(parse_docstring=True)
def get_weather(location: str) -> str:
"""Get the current weather in a given location
Args:
location: The city and state, e.g. San Francisco, CA
"""
return "Sunny"
messages = [
HumanMessage(content="What's the weather like in San Francisco?"),
]
num_tokens = llm.get_num_tokens_from_messages(messages, tools=[get_weather])
assert num_tokens > 0
messages = [
HumanMessage(content="What's the weather like in San Francisco?"),
AIMessage(
content=[
{"text": "Let's see.", "type": "text"},
{
"id": "toolu_01V6d6W32QGGSmQm4BT98EKk",
"input": {"location": "SF"},
"name": "get_weather",
"type": "tool_use",
},
],
tool_calls=[
{
"name": "get_weather",
"args": {"location": "SF"},
"id": "toolu_01V6d6W32QGGSmQm4BT98EKk",
"type": "tool_call",
},
],
),
ToolMessage(content="Sunny", tool_call_id="toolu_01V6d6W32QGGSmQm4BT98EKk"),
]
num_tokens = llm.get_num_tokens_from_messages(messages, tools=[get_weather])
assert num_tokens > 0
class GetWeather(BaseModel):
"""Get the current weather in a given location"""
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
@pytest.mark.parametrize("tool_choice", ["GetWeather", "auto", "any"])
def test_anthropic_bind_tools_tool_choice(tool_choice: str) -> None:
chat_model = ChatAnthropic(
model=MODEL_NAME,
)
chat_model_with_tools = chat_model.bind_tools([GetWeather], tool_choice=tool_choice)
response = chat_model_with_tools.invoke("what's the weather in ny and la")
assert isinstance(response, AIMessage)
def test_pdf_document_input() -> None:
url = "https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf"
data = b64encode(requests.get(url).content).decode()
result = ChatAnthropic(model=IMAGE_MODEL_NAME).invoke(
[
HumanMessage(
[
"summarize this document",
{
"type": "document",
"source": {
"type": "base64",
"data": data,
"media_type": "application/pdf",
},
},
]
)
]
)
assert isinstance(result, AIMessage)
assert isinstance(result.content, str)
assert len(result.content) > 0
def test_citations() -> None:
llm = ChatAnthropic(model="claude-3-5-haiku-latest")
messages = [
{
"role": "user",
"content": [
{
"type": "document",
"source": {
"type": "content",
"content": [
{"type": "text", "text": "The grass is green"},
{"type": "text", "text": "The sky is blue"},
],
},
"citations": {"enabled": True},
},
{"type": "text", "text": "What color is the grass and sky?"},
],
}
]
response = llm.invoke(messages)
assert isinstance(response, AIMessage)
assert isinstance(response.content, list)
assert any("citations" in block for block in response.content)
# Test streaming
full: Optional[BaseMessageChunk] = None
for chunk in llm.stream(messages):
full = chunk if full is None else full + chunk
assert isinstance(full, AIMessageChunk)
assert isinstance(full.content, list)
assert any("citations" in block for block in full.content)
assert not any("citation" in block for block in full.content)
def test_thinking() -> None:
llm = ChatAnthropic(
model="claude-3-7-sonnet-latest",
max_tokens=5_000,
thinking={"type": "enabled", "budget_tokens": 2_000},
)
response = llm.invoke("Hello")
assert any("thinking" in block for block in response.content)
for block in response.content:
assert isinstance(block, dict)
if block["type"] == "thinking":
assert set(block.keys()) == {"type", "thinking", "signature"}
assert block["thinking"] and isinstance(block["thinking"], str)
assert block["signature"] and isinstance(block["signature"], str)
# Test streaming
full: Optional[BaseMessageChunk] = None
for chunk in llm.stream("Hello"):
full = chunk if full is None else full + chunk
assert isinstance(full, AIMessageChunk)
assert isinstance(full.content, list)
assert any("thinking" in block for block in full.content)
for block in full.content:
assert isinstance(block, dict)
if block["type"] == "thinking":
assert set(block.keys()) == {"type", "thinking", "signature", "index"}
assert block["thinking"] and isinstance(block["thinking"], str)
assert block["signature"] and isinstance(block["signature"], str)
@pytest.mark.flaky(retries=3, delay=1)
def test_redacted_thinking() -> None:
llm = ChatAnthropic(
model="claude-3-7-sonnet-latest",
max_tokens=5_000,
thinking={"type": "enabled", "budget_tokens": 2_000},
)
query = "ANTHROPIC_MAGIC_STRING_TRIGGER_REDACTED_THINKING_46C9A13E193C177646C7398A98432ECCCE4C1253D5E2D82641AC0E52CC2876CB" # noqa: E501
response = llm.invoke(query)
has_reasoning = False
for block in response.content:
assert isinstance(block, dict)
if block["type"] == "redacted_thinking":
has_reasoning = True
assert set(block.keys()) == {"type", "data"}
assert block["data"] and isinstance(block["data"], str)
assert has_reasoning
# Test streaming
full: Optional[BaseMessageChunk] = None
for chunk in llm.stream(query):
full = chunk if full is None else full + chunk
assert isinstance(full, AIMessageChunk)
assert isinstance(full.content, list)
stream_has_reasoning = False
for block in full.content:
assert isinstance(block, dict)
if block["type"] == "redacted_thinking":
stream_has_reasoning = True
assert set(block.keys()) == {"type", "data", "index"}
assert block["data"] and isinstance(block["data"], str)
assert stream_has_reasoning
def test_structured_output_thinking_enabled() -> None:
llm = ChatAnthropic(
model="claude-3-7-sonnet-latest",
max_tokens=5_000,
thinking={"type": "enabled", "budget_tokens": 2_000},
)
with pytest.warns(match="structured output"):
structured_llm = llm.with_structured_output(GenerateUsername)
query = "Generate a username for Sally with green hair"
response = structured_llm.invoke(query)
assert isinstance(response, GenerateUsername)
with pytest.raises(OutputParserException):
structured_llm.invoke("Hello")
# Test streaming
for chunk in structured_llm.stream(query):
assert isinstance(chunk, GenerateUsername)
def test_structured_output_thinking_force_tool_use() -> None:
# Structured output currently relies on forced tool use, which is not supported
# when `thinking` is enabled. When this test fails, it means that the feature
# is supported and the workarounds in `with_structured_output` should be removed.
llm = ChatAnthropic(
model="claude-3-7-sonnet-latest",
max_tokens=5_000,
thinking={"type": "enabled", "budget_tokens": 2_000},
).bind_tools(
[GenerateUsername],
tool_choice="GenerateUsername",
)
with pytest.raises(BadRequestError):
llm.invoke("Generate a username for Sally with green hair")
def test_image_tool_calling() -> None:
"""Test tool calling with image inputs."""
class color_picker(BaseModel):
"""Input your fav color and get a random fact about it."""
fav_color: str
human_content: List[dict] = [
{
"type": "text",
"text": "what's your favorite color in this image",
},
]
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
image_data = b64encode(httpx.get(image_url).content).decode("utf-8")
human_content.append(
{
"type": "image",
"source": {
"type": "base64",
"media_type": "image/jpeg",
"data": image_data,
},
}
)
messages = [
SystemMessage("you're a good assistant"),
HumanMessage(human_content), # type: ignore[arg-type]
AIMessage(
[
{"type": "text", "text": "Hmm let me think about that"},
{
"type": "tool_use",
"input": {"fav_color": "green"},
"id": "foo",
"name": "color_picker",
},
]
),
HumanMessage(
[
{
"type": "tool_result",
"tool_use_id": "foo",
"content": [
{
"type": "text",
"text": "green is a great pick! that's my sister's favorite color", # noqa: E501
}
],
"is_error": False,
},
{"type": "text", "text": "what's my sister's favorite color"},
]
),
]
llm = ChatAnthropic(model="claude-3-5-sonnet-latest")
llm.bind_tools([color_picker]).invoke(messages)