langchain/libs/partners/mistralai/tests/integration_tests/test_chat_models.py
Andras L Ferenczi 63673b765b
Fix: Enable max_retries Parameter in ChatMistralAI Class (#30448)
**partners: Enable max_retries in ChatMistralAI**

**Description**

- This pull request reactivates the retry logic in the
completion_with_retry method of the ChatMistralAI class, restoring the
intended functionality of the previously ineffective max_retries
parameter. New unit test that mocks failed/successful retry calls and an
integration test to confirm end-to-end functionality.

**Issue**
- Closes #30362

**Dependencies**
- No additional dependencies required

Co-authored-by: andrasfe <andrasf94@gmail.com>
2025-03-27 11:53:44 -04:00

343 lines
11 KiB
Python

"""Test ChatMistral chat model."""
import json
import logging
import time
from typing import Any, Optional
import pytest
from httpx import ReadTimeout
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessageChunk,
HumanMessage,
)
from pydantic import BaseModel
from typing_extensions import TypedDict
from langchain_mistralai.chat_models import ChatMistralAI
def test_stream() -> None:
"""Test streaming tokens from ChatMistralAI."""
llm = ChatMistralAI()
for token in llm.stream("Hello"):
assert isinstance(token.content, str)
async def test_astream() -> None:
"""Test streaming tokens from ChatMistralAI."""
llm = ChatMistralAI()
full: Optional[BaseMessageChunk] = None
chunks_with_token_counts = 0
chunks_with_response_metadata = 0
async for token in llm.astream("Hello"):
assert isinstance(token, AIMessageChunk)
assert isinstance(token.content, str)
full = token if full is None else full + token
if token.usage_metadata is not None:
chunks_with_token_counts += 1
if token.response_metadata:
chunks_with_response_metadata += 1
if chunks_with_token_counts != 1 or chunks_with_response_metadata != 1:
raise AssertionError(
"Expected exactly one chunk with token counts or response_metadata. "
"AIMessageChunk aggregation adds / appends counts and metadata. Check that "
"this is behaving properly."
)
assert isinstance(full, AIMessageChunk)
assert full.usage_metadata is not None
assert full.usage_metadata["input_tokens"] > 0
assert full.usage_metadata["output_tokens"] > 0
assert (
full.usage_metadata["input_tokens"] + full.usage_metadata["output_tokens"]
== full.usage_metadata["total_tokens"]
)
assert isinstance(full.response_metadata["model_name"], str)
assert full.response_metadata["model_name"]
async def test_abatch() -> None:
"""Test streaming tokens from ChatMistralAI"""
llm = ChatMistralAI()
result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token.content, str)
async def test_abatch_tags() -> None:
"""Test batch tokens from ChatMistralAI"""
llm = ChatMistralAI()
result = await llm.abatch(
["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]}
)
for token in result:
assert isinstance(token.content, str)
def test_batch() -> None:
"""Test batch tokens from ChatMistralAI"""
llm = ChatMistralAI()
result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token.content, str)
async def test_ainvoke() -> None:
"""Test invoke tokens from ChatMistralAI"""
llm = ChatMistralAI()
result = await llm.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]})
assert isinstance(result.content, str)
assert "model_name" in result.response_metadata
def test_invoke() -> None:
"""Test invoke tokens from ChatMistralAI"""
llm = ChatMistralAI()
result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"]))
assert isinstance(result.content, str)
def test_chat_mistralai_llm_output_contains_model_name() -> None:
"""Test llm_output contains model_name."""
chat = ChatMistralAI(max_tokens=10)
message = HumanMessage(content="Hello")
llm_result = chat.generate([[message]])
assert llm_result.llm_output is not None
assert llm_result.llm_output["model_name"] == chat.model
def test_chat_mistralai_streaming_llm_output_contains_model_name() -> None:
"""Test llm_output contains model_name."""
chat = ChatMistralAI(max_tokens=10, streaming=True)
message = HumanMessage(content="Hello")
llm_result = chat.generate([[message]])
assert llm_result.llm_output is not None
assert llm_result.llm_output["model_name"] == chat.model
def test_chat_mistralai_llm_output_contains_token_usage() -> None:
"""Test llm_output contains model_name."""
chat = ChatMistralAI(max_tokens=10)
message = HumanMessage(content="Hello")
llm_result = chat.generate([[message]])
assert llm_result.llm_output is not None
assert "token_usage" in llm_result.llm_output
token_usage = llm_result.llm_output["token_usage"]
assert "prompt_tokens" in token_usage
assert "completion_tokens" in token_usage
assert "total_tokens" in token_usage
def test_chat_mistralai_streaming_llm_output_not_contain_token_usage() -> None:
"""Mistral currently doesn't return token usage when streaming."""
chat = ChatMistralAI(max_tokens=10, streaming=True)
message = HumanMessage(content="Hello")
llm_result = chat.generate([[message]])
assert llm_result.llm_output is not None
assert "token_usage" in llm_result.llm_output
token_usage = llm_result.llm_output["token_usage"]
assert not token_usage
def test_structured_output() -> None:
llm = ChatMistralAI(model="mistral-large-latest", temperature=0) # type: ignore[call-arg]
schema = {
"title": "AnswerWithJustification",
"description": (
"An answer to the user question along with justification for the answer."
),
"type": "object",
"properties": {
"answer": {"title": "Answer", "type": "string"},
"justification": {"title": "Justification", "type": "string"},
},
"required": ["answer", "justification"],
}
structured_llm = llm.with_structured_output(schema)
result = structured_llm.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
assert isinstance(result, dict)
def test_streaming_structured_output() -> None:
llm = ChatMistralAI(model="mistral-large-latest", temperature=0) # type: ignore[call-arg]
class Person(BaseModel):
name: str
age: int
structured_llm = llm.with_structured_output(Person)
strm = structured_llm.stream("Erick, 27 years old")
chunk_num = 0
for chunk in strm:
assert chunk_num == 0, "should only have one chunk with model"
assert isinstance(chunk, Person)
assert chunk.name == "Erick"
assert chunk.age == 27
chunk_num += 1
class Book(BaseModel):
name: str
authors: list[str]
class BookDict(TypedDict):
name: str
authors: list[str]
def _check_parsed_result(result: Any, schema: Any) -> None:
if schema == Book:
assert isinstance(result, Book)
else:
assert all(key in ["name", "authors"] for key in result.keys())
@pytest.mark.parametrize("schema", [Book, BookDict, Book.model_json_schema()])
def test_structured_output_json_schema(schema: Any) -> None:
llm = ChatMistralAI(model="ministral-8b-latest") # type: ignore[call-arg]
structured_llm = llm.with_structured_output(schema, method="json_schema")
messages = [
{"role": "system", "content": "Extract the book's information."},
{
"role": "user",
"content": "I recently read 'To Kill a Mockingbird' by Harper Lee.",
},
]
# Test invoke
result = structured_llm.invoke(messages)
_check_parsed_result(result, schema)
# Test stream
for chunk in structured_llm.stream(messages):
_check_parsed_result(chunk, schema)
@pytest.mark.parametrize("schema", [Book, BookDict, Book.model_json_schema()])
async def test_structured_output_json_schema_async(schema: Any) -> None:
llm = ChatMistralAI(model="ministral-8b-latest") # type: ignore[call-arg]
structured_llm = llm.with_structured_output(schema, method="json_schema")
messages = [
{"role": "system", "content": "Extract the book's information."},
{
"role": "user",
"content": "I recently read 'To Kill a Mockingbird' by Harper Lee.",
},
]
# Test invoke
result = await structured_llm.ainvoke(messages)
_check_parsed_result(result, schema)
# Test stream
async for chunk in structured_llm.astream(messages):
_check_parsed_result(chunk, schema)
def test_tool_call() -> None:
llm = ChatMistralAI(model="mistral-large-latest", temperature=0) # type: ignore[call-arg]
class Person(BaseModel):
name: str
age: int
tool_llm = llm.bind_tools([Person])
result = tool_llm.invoke("Erick, 27 years old")
assert isinstance(result, AIMessage)
assert len(result.tool_calls) == 1
tool_call = result.tool_calls[0]
assert tool_call["name"] == "Person"
assert tool_call["args"] == {"name": "Erick", "age": 27}
def test_streaming_tool_call() -> None:
llm = ChatMistralAI(model="mistral-large-latest", temperature=0) # type: ignore[call-arg]
class Person(BaseModel):
name: str
age: int
tool_llm = llm.bind_tools([Person])
# where it calls the tool
strm = tool_llm.stream("Erick, 27 years old")
additional_kwargs = None
for chunk in strm:
assert isinstance(chunk, AIMessageChunk)
assert chunk.content == ""
additional_kwargs = chunk.additional_kwargs
assert additional_kwargs is not None
assert "tool_calls" in additional_kwargs
assert len(additional_kwargs["tool_calls"]) == 1
assert additional_kwargs["tool_calls"][0]["function"]["name"] == "Person"
assert json.loads(additional_kwargs["tool_calls"][0]["function"]["arguments"]) == {
"name": "Erick",
"age": 27,
}
assert isinstance(chunk, AIMessageChunk)
assert len(chunk.tool_call_chunks) == 1
tool_call_chunk = chunk.tool_call_chunks[0]
assert tool_call_chunk["name"] == "Person"
assert tool_call_chunk["args"] == '{"name": "Erick", "age": 27}'
# where it doesn't call the tool
strm = tool_llm.stream("What is 2+2?")
acc: Any = None
for chunk in strm:
assert isinstance(chunk, AIMessageChunk)
acc = chunk if acc is None else acc + chunk
assert acc.content != ""
assert "tool_calls" not in acc.additional_kwargs
def test_retry_parameters(caplog: pytest.LogCaptureFixture) -> None:
"""Test that retry parameters are honored in ChatMistralAI."""
# Create a model with intentionally short timeout and multiple retries
mistral = ChatMistralAI(
timeout=1, # Very short timeout to trigger timeouts
max_retries=3, # Should retry 3 times
)
# Simple test input that should take longer than 1 second to process
test_input = "Write a 2 sentence story about a cat"
# Measure start time
t0 = time.time()
try:
# Try to get a response
response = mistral.invoke(test_input)
# If successful, validate the response
elapsed_time = time.time() - t0
logging.info(f"Request succeeded in {elapsed_time:.2f} seconds")
# Check that we got a valid response
assert response.content
assert isinstance(response.content, str)
assert "cat" in response.content.lower()
except ReadTimeout:
elapsed_time = time.time() - t0
logging.info(f"Request timed out after {elapsed_time:.2f} seconds")
assert elapsed_time >= 3.0
pytest.skip("Test timed out as expected with short timeout")
except Exception as e:
logging.error(f"Unexpected exception: {e}")
raise