mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-31 12:09:58 +00:00
Please see PR #27678 for context ## Overview This pull request presents a refactor of the `HTMLHeaderTextSplitter` class aimed at improving its maintainability and readability. The primary enhancements include simplifying the internal structure by consolidating multiple private helper functions into a single private method, thereby reducing complexity and making the codebase easier to understand and extend. Importantly, all existing functionalities and public interfaces remain unchanged. ## PR Goals 1. **Simplify Internal Logic**: - **Consolidation of Private Methods**: The original implementation utilized multiple private helper functions (`_header_level`, `_dom_depth`, `_get_elements`) to manage different aspects of HTML parsing and document generation. This fragmentation increased cognitive load and potential maintenance overhead. - **Streamlined Processing**: By merging these functionalities into a single private method (`_generate_documents`), the class now offers a more straightforward flow, making it easier for developers to trace and understand the processing steps. (Thanks to @eyurtsev) 2. **Enhance Readability**: - **Clearer Method Responsibilities**: With fewer private methods, each method now has a more focused responsibility. The primary logic resides within `_generate_documents`, which handles both HTML traversal and document creation in a cohesive manner. - **Reduced Redundancy**: Eliminating redundant checks and consolidating logic reduces the code's verbosity, making it more concise without sacrificing clarity. 3. **Improve Maintainability**: - **Easier Debugging and Extension**: A simplified internal structure allows for quicker identification of issues and easier implementation of future enhancements or feature additions. - **Consistent Header Management**: The new implementation ensures that headers are managed consistently within a single context, reducing the likelihood of bugs related to header scope and hierarchy. 4. **Maintain Backward Compatibility**: - **Unchanged Public Interface**: All public methods (`split_text`, `split_text_from_url`, `split_text_from_file`) and their signatures remain unchanged, ensuring that existing integrations and usage patterns are unaffected. - **Preserved Docstrings**: Comprehensive docstrings are retained, providing clear documentation for users and developers alike. ## Detailed Changes 1. **Removed Redundant Private Methods**: - **Eliminated `_header_level`, `_dom_depth`, and `_get_elements`**: These methods were merged into the `_generate_documents` method, centralizing the logic for HTML parsing and document generation. 2. **Consolidated Document Generation Logic**: - **Single Private Method `_generate_documents`**: This method now handles the entire process of parsing HTML, tracking active headers, managing document chunks, and yielding `Document` instances. This consolidation reduces the number of moving parts and simplifies the overall processing flow. 3. **Simplified Header Management**: - **Immediate Header Scope Handling**: Headers are now managed within the traversal loop of `_generate_documents`, ensuring that headers are added or removed from the active headers dictionary in real-time based on their DOM depth and hierarchy. - **Removed `chunk_dom_depth` Attribute**: The need to track chunk DOM depth separately has been eliminated, as header scopes are now directly managed within the traversal logic. 4. **Streamlined Chunk Finalization**: - **Enhanced `finalize_chunk` Function**: The chunk finalization process has been simplified to directly yield a single `Document` when needed, without maintaining an intermediate list. This change reduces unnecessary list operations and makes the logic more straightforward. 5. **Improved Variable Naming and Flow**: - **Descriptive Variable Names**: Variables such as `current_chunk` and `node_text` provide clear insights into their roles within the processing logic. - **Direct Header Removal Logic**: Headers that are out of scope are removed immediately during traversal, ensuring that the active headers dictionary remains accurate and up-to-date. 6. **Preserved Comprehensive Docstrings**: - **Unchanged Documentation**: All existing docstrings, including class-level and method-level documentation, remain intact. This ensures that users and developers continue to have access to detailed usage instructions and method explanations. ## Testing All existing test cases from `test_html_header_text_splitter.py` have been executed against the refactored code. The results confirm that: - **Functionality Remains Intact**: The splitter continues to accurately parse HTML content, respect header hierarchies, and produce the expected `Document` objects with correct metadata. - **Backward Compatibility is Maintained**: No changes were required in the test cases, and all tests pass without modifications, demonstrating that the refactor does not introduce any regressions or alter existing behaviors. This example remains fully operational and behaves as before, returning a list of `Document` objects with the expected metadata and content splits. ## Conclusion This refactor achieves a more maintainable and readable codebase by simplifying the internal structure of the `HTMLHeaderTextSplitter` class. By consolidating multiple private methods into a single, cohesive private method, the class becomes easier to understand, debug, and extend. All existing functionalities are preserved, and comprehensive tests confirm that the refactor maintains the expected behavior. These changes align with LangChain’s standards for clean, maintainable, and efficient code. --- --------- Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
979 lines
36 KiB
Python
979 lines
36 KiB
Python
from __future__ import annotations
|
|
|
|
import copy
|
|
import pathlib
|
|
import re
|
|
from io import StringIO
|
|
from typing import (
|
|
Any,
|
|
Callable,
|
|
Dict,
|
|
Iterable,
|
|
List,
|
|
Optional,
|
|
Sequence,
|
|
Tuple,
|
|
TypedDict,
|
|
cast,
|
|
)
|
|
|
|
import requests
|
|
from langchain_core._api import beta
|
|
from langchain_core.documents import BaseDocumentTransformer, Document
|
|
|
|
from langchain_text_splitters.character import RecursiveCharacterTextSplitter
|
|
|
|
|
|
class ElementType(TypedDict):
|
|
"""Element type as typed dict."""
|
|
|
|
url: str
|
|
xpath: str
|
|
content: str
|
|
metadata: Dict[str, str]
|
|
|
|
|
|
class HTMLHeaderTextSplitter:
|
|
"""Split HTML content into structured Documents based on specified headers.
|
|
|
|
Splits HTML content by detecting specified header tags (e.g., <h1>, <h2>) and
|
|
creating hierarchical Document objects that reflect the semantic structure
|
|
of the original content. For each identified section, the splitter associates
|
|
the extracted text with metadata corresponding to the encountered headers.
|
|
|
|
If no specified headers are found, the entire content is returned as a single
|
|
Document. This allows for flexible handling of HTML input, ensuring that
|
|
information is organized according to its semantic headers.
|
|
|
|
The splitter provides the option to return each HTML element as a separate
|
|
Document or aggregate them into semantically meaningful chunks. It also
|
|
gracefully handles multiple levels of nested headers, creating a rich,
|
|
hierarchical representation of the content.
|
|
|
|
Args:
|
|
headers_to_split_on (List[Tuple[str, str]]): A list of (header_tag,
|
|
header_name) pairs representing the headers that define splitting
|
|
boundaries. For example, [("h1", "Header 1"), ("h2", "Header 2")]
|
|
will split content by <h1> and <h2> tags, assigning their textual
|
|
content to the Document metadata.
|
|
return_each_element (bool): If True, every HTML element encountered
|
|
(including headers, paragraphs, etc.) is returned as a separate
|
|
Document. If False, content under the same header hierarchy is
|
|
aggregated into fewer Documents.
|
|
|
|
Returns:
|
|
List[Document]: A list of Document objects. Each Document contains
|
|
`page_content` holding the extracted text and `metadata` that maps
|
|
the header hierarchy to their corresponding titles.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_text_splitters.html_header_text_splitter import (
|
|
HTMLHeaderTextSplitter,
|
|
)
|
|
|
|
# Define headers for splitting on h1 and h2 tags.
|
|
headers_to_split_on = [("h1", "Main Topic"), ("h2", "Sub Topic")]
|
|
|
|
splitter = HTMLHeaderTextSplitter(
|
|
headers_to_split_on=headers_to_split_on,
|
|
return_each_element=False
|
|
)
|
|
|
|
html_content = \"\"\"
|
|
<html>
|
|
<body>
|
|
<h1>Introduction</h1>
|
|
<p>Welcome to the introduction section.</p>
|
|
<h2>Background</h2>
|
|
<p>Some background details here.</p>
|
|
<h1>Conclusion</h1>
|
|
<p>Final thoughts.</p>
|
|
</body>
|
|
</html>
|
|
\"\"\"
|
|
|
|
documents = splitter.split_text(html_content)
|
|
|
|
# 'documents' now contains Document objects reflecting the hierarchy:
|
|
# - Document with metadata={"Main Topic": "Introduction"} and
|
|
# content="Introduction"
|
|
# - Document with metadata={"Main Topic": "Introduction"} and
|
|
# content="Welcome to the introduction section."
|
|
# - Document with metadata={"Main Topic": "Introduction",
|
|
# "Sub Topic": "Background"} and content="Background"
|
|
# - Document with metadata={"Main Topic": "Introduction",
|
|
# "Sub Topic": "Background"} and content="Some background details here."
|
|
# - Document with metadata={"Main Topic": "Conclusion"} and
|
|
# content="Conclusion"
|
|
# - Document with metadata={"Main Topic": "Conclusion"} and
|
|
# content="Final thoughts."
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
headers_to_split_on: List[Tuple[str, str]],
|
|
return_each_element: bool = False,
|
|
) -> None:
|
|
"""Initialize with headers to split on.
|
|
|
|
Args:
|
|
headers_to_split_on: A list of tuples where
|
|
each tuple contains a header tag and its corresponding value.
|
|
return_each_element: Whether to return each HTML
|
|
element as a separate Document. Defaults to False.
|
|
"""
|
|
# Sort headers by their numeric level so that h1 < h2 < h3...
|
|
self.headers_to_split_on = sorted(
|
|
headers_to_split_on, key=lambda x: int(x[0][1:])
|
|
)
|
|
self.header_mapping = dict(self.headers_to_split_on)
|
|
self.header_tags = [tag for tag, _ in self.headers_to_split_on]
|
|
self.return_each_element = return_each_element
|
|
|
|
def split_text(self, text: str) -> List[Document]:
|
|
"""Split the given text into a list of Document objects.
|
|
|
|
Args:
|
|
text: The HTML text to split.
|
|
|
|
Returns:
|
|
A list of split Document objects.
|
|
"""
|
|
return self.split_text_from_file(StringIO(text))
|
|
|
|
def split_text_from_url(
|
|
self, url: str, timeout: int = 10, **kwargs: Any
|
|
) -> List[Document]:
|
|
"""Fetch text content from a URL and split it into documents.
|
|
|
|
Args:
|
|
url: The URL to fetch content from.
|
|
timeout: Timeout for the request. Defaults to 10.
|
|
**kwargs: Additional keyword arguments for the request.
|
|
|
|
Returns:
|
|
A list of split Document objects.
|
|
|
|
Raises:
|
|
requests.RequestException: If the HTTP request fails.
|
|
"""
|
|
kwargs.setdefault("timeout", timeout)
|
|
response = requests.get(url, **kwargs)
|
|
response.raise_for_status()
|
|
return self.split_text(response.text)
|
|
|
|
def split_text_from_file(self, file: Any) -> List[Document]:
|
|
"""Split HTML content from a file into a list of Document objects.
|
|
|
|
Args:
|
|
file: A file path or a file-like object containing HTML content.
|
|
|
|
Returns:
|
|
A list of split Document objects.
|
|
"""
|
|
if isinstance(file, str):
|
|
with open(file, "r", encoding="utf-8") as f:
|
|
html_content = f.read()
|
|
else:
|
|
html_content = file.read()
|
|
return list(self._generate_documents(html_content))
|
|
|
|
def _generate_documents(self, html_content: str) -> Any:
|
|
"""Private method that performs a DFS traversal over the DOM and yields.
|
|
|
|
Document objects on-the-fly. This approach maintains the same splitting
|
|
logic (headers vs. non-headers, chunking, etc.) while walking the DOM
|
|
explicitly in code.
|
|
|
|
Args:
|
|
html_content: The raw HTML content.
|
|
|
|
Yields:
|
|
Document objects as they are created.
|
|
"""
|
|
try:
|
|
from bs4 import BeautifulSoup
|
|
except ImportError as e:
|
|
raise ImportError(
|
|
"Unable to import BeautifulSoup. Please install via `pip install bs4`."
|
|
) from e
|
|
|
|
soup = BeautifulSoup(html_content, "html.parser")
|
|
body = soup.body if soup.body else soup
|
|
|
|
# Dictionary of active headers:
|
|
# key = user-defined header name (e.g. "Header 1")
|
|
# value = (header_text, level, dom_depth)
|
|
active_headers: Dict[str, Tuple[str, int, int]] = {}
|
|
current_chunk: List[str] = []
|
|
|
|
def finalize_chunk() -> Optional[Document]:
|
|
"""Finalize the accumulated chunk into a single Document."""
|
|
if not current_chunk:
|
|
return None
|
|
|
|
final_text = " \n".join(line for line in current_chunk if line.strip())
|
|
current_chunk.clear()
|
|
if not final_text.strip():
|
|
return None
|
|
|
|
final_meta = {k: v[0] for k, v in active_headers.items()}
|
|
return Document(page_content=final_text, metadata=final_meta)
|
|
|
|
# We'll use a stack for DFS traversal
|
|
stack = [body]
|
|
while stack:
|
|
node = stack.pop()
|
|
children = list(node.children)
|
|
from bs4.element import Tag
|
|
|
|
for child in reversed(children):
|
|
if isinstance(child, Tag):
|
|
stack.append(child)
|
|
|
|
tag = getattr(node, "name", None)
|
|
if not tag:
|
|
continue
|
|
|
|
text_elements = [
|
|
str(child).strip()
|
|
for child in node.find_all(string=True, recursive=False)
|
|
]
|
|
node_text = " ".join(elem for elem in text_elements if elem)
|
|
if not node_text:
|
|
continue
|
|
|
|
dom_depth = len(list(node.parents))
|
|
|
|
# If this node is one of our headers
|
|
if tag in self.header_tags:
|
|
# If we're aggregating, finalize whatever chunk we had
|
|
if not self.return_each_element:
|
|
doc = finalize_chunk()
|
|
if doc:
|
|
yield doc
|
|
|
|
# Determine numeric level (h1->1, h2->2, etc.)
|
|
try:
|
|
level = int(tag[1:])
|
|
except ValueError:
|
|
level = 9999
|
|
|
|
# Remove any active headers that are at or deeper than this new level
|
|
headers_to_remove = [
|
|
k for k, (_, lvl, d) in active_headers.items() if lvl >= level
|
|
]
|
|
for key in headers_to_remove:
|
|
del active_headers[key]
|
|
|
|
# Add/Update the active header
|
|
header_name = self.header_mapping[tag]
|
|
active_headers[header_name] = (node_text, level, dom_depth)
|
|
|
|
# Always yield a Document for the header
|
|
header_meta = {k: v[0] for k, v in active_headers.items()}
|
|
yield Document(page_content=node_text, metadata=header_meta)
|
|
|
|
else:
|
|
headers_out_of_scope = [
|
|
k for k, (_, _, d) in active_headers.items() if dom_depth < d
|
|
]
|
|
for key in headers_out_of_scope:
|
|
del active_headers[key]
|
|
|
|
if self.return_each_element:
|
|
# Yield each element's text as its own Document
|
|
meta = {k: v[0] for k, v in active_headers.items()}
|
|
yield Document(page_content=node_text, metadata=meta)
|
|
else:
|
|
# Accumulate text in our chunk
|
|
current_chunk.append(node_text)
|
|
|
|
# If we're aggregating and have leftover chunk, yield it
|
|
if not self.return_each_element:
|
|
doc = finalize_chunk()
|
|
if doc:
|
|
yield doc
|
|
|
|
|
|
class HTMLSectionSplitter:
|
|
"""Splitting HTML files based on specified tag and font sizes.
|
|
|
|
Requires lxml package.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
headers_to_split_on: List[Tuple[str, str]],
|
|
xslt_path: Optional[str] = None,
|
|
**kwargs: Any,
|
|
) -> None:
|
|
"""Create a new HTMLSectionSplitter.
|
|
|
|
Args:
|
|
headers_to_split_on: list of tuples of headers we want to track mapped to
|
|
(arbitrary) keys for metadata. Allowed header values: h1, h2, h3, h4,
|
|
h5, h6 e.g. [("h1", "Header 1"), ("h2", "Header 2"].
|
|
xslt_path: path to xslt file for document transformation.
|
|
Uses a default if not passed.
|
|
Needed for html contents that using different format and layouts.
|
|
**kwargs (Any): Additional optional arguments for customizations.
|
|
|
|
"""
|
|
self.headers_to_split_on = dict(headers_to_split_on)
|
|
|
|
if xslt_path is None:
|
|
self.xslt_path = (
|
|
pathlib.Path(__file__).parent / "xsl/converting_to_header.xslt"
|
|
).absolute()
|
|
else:
|
|
self.xslt_path = pathlib.Path(xslt_path).absolute()
|
|
self.kwargs = kwargs
|
|
|
|
def split_documents(self, documents: Iterable[Document]) -> List[Document]:
|
|
"""Split documents."""
|
|
texts, metadatas = [], []
|
|
for doc in documents:
|
|
texts.append(doc.page_content)
|
|
metadatas.append(doc.metadata)
|
|
results = self.create_documents(texts, metadatas=metadatas)
|
|
|
|
text_splitter = RecursiveCharacterTextSplitter(**self.kwargs)
|
|
|
|
return text_splitter.split_documents(results)
|
|
|
|
def split_text(self, text: str) -> List[Document]:
|
|
"""Split HTML text string.
|
|
|
|
Args:
|
|
text: HTML text
|
|
"""
|
|
return self.split_text_from_file(StringIO(text))
|
|
|
|
def create_documents(
|
|
self, texts: List[str], metadatas: Optional[List[dict]] = None
|
|
) -> List[Document]:
|
|
"""Create documents from a list of texts."""
|
|
_metadatas = metadatas or [{}] * len(texts)
|
|
documents = []
|
|
for i, text in enumerate(texts):
|
|
for chunk in self.split_text(text):
|
|
metadata = copy.deepcopy(_metadatas[i])
|
|
|
|
for key in chunk.metadata.keys():
|
|
if chunk.metadata[key] == "#TITLE#":
|
|
chunk.metadata[key] = metadata["Title"]
|
|
metadata = {**metadata, **chunk.metadata}
|
|
new_doc = Document(page_content=chunk.page_content, metadata=metadata)
|
|
documents.append(new_doc)
|
|
return documents
|
|
|
|
def split_html_by_headers(self, html_doc: str) -> List[Dict[str, Optional[str]]]:
|
|
"""Split an HTML document into sections based on specified header tags.
|
|
|
|
This method uses BeautifulSoup to parse the HTML content and divides it into
|
|
sections based on headers defined in `headers_to_split_on`. Each section
|
|
contains the header text, content under the header, and the tag name.
|
|
|
|
Args:
|
|
html_doc (str): The HTML document to be split into sections.
|
|
|
|
Returns:
|
|
List[Dict[str, Optional[str]]]: A list of dictionaries representing
|
|
sections.
|
|
Each dictionary contains:
|
|
- 'header': The header text or a default title for the first section.
|
|
- 'content': The content under the header.
|
|
- 'tag_name': The name of the header tag (e.g., "h1", "h2").
|
|
"""
|
|
try:
|
|
from bs4 import (
|
|
BeautifulSoup, # type: ignore[import-untyped]
|
|
PageElement,
|
|
)
|
|
except ImportError as e:
|
|
raise ImportError(
|
|
"Unable to import BeautifulSoup/PageElement, \
|
|
please install with `pip install \
|
|
bs4`."
|
|
) from e
|
|
|
|
soup = BeautifulSoup(html_doc, "html.parser")
|
|
headers = list(self.headers_to_split_on.keys())
|
|
sections: list[dict[str, str | None]] = []
|
|
|
|
headers = soup.find_all(["body"] + headers) # type: ignore[assignment]
|
|
|
|
for i, header in enumerate(headers):
|
|
header_element = cast(PageElement, header)
|
|
if i == 0:
|
|
current_header = "#TITLE#"
|
|
current_header_tag = "h1"
|
|
section_content: List = []
|
|
else:
|
|
current_header = header_element.text.strip()
|
|
current_header_tag = header_element.name # type: ignore[attr-defined]
|
|
section_content = []
|
|
for element in header_element.next_elements:
|
|
if i + 1 < len(headers) and element == headers[i + 1]:
|
|
break
|
|
if isinstance(element, str):
|
|
section_content.append(element)
|
|
content = " ".join(section_content).strip()
|
|
|
|
if content != "":
|
|
sections.append(
|
|
{
|
|
"header": current_header,
|
|
"content": content,
|
|
"tag_name": current_header_tag,
|
|
}
|
|
)
|
|
|
|
return sections
|
|
|
|
def convert_possible_tags_to_header(self, html_content: str) -> str:
|
|
"""Convert specific HTML tags to headers using an XSLT transformation.
|
|
|
|
This method uses an XSLT file to transform the HTML content, converting
|
|
certain tags into headers for easier parsing. If no XSLT path is provided,
|
|
the HTML content is returned unchanged.
|
|
|
|
Args:
|
|
html_content (str): The HTML content to be transformed.
|
|
|
|
Returns:
|
|
str: The transformed HTML content as a string.
|
|
"""
|
|
if self.xslt_path is None:
|
|
return html_content
|
|
|
|
try:
|
|
from lxml import etree
|
|
except ImportError as e:
|
|
raise ImportError(
|
|
"Unable to import lxml, please install with `pip install lxml`."
|
|
) from e
|
|
# use lxml library to parse html document and return xml ElementTree
|
|
parser = etree.HTMLParser()
|
|
tree = etree.parse(StringIO(html_content), parser)
|
|
|
|
xslt_tree = etree.parse(self.xslt_path)
|
|
transform = etree.XSLT(xslt_tree)
|
|
result = transform(tree)
|
|
return str(result)
|
|
|
|
def split_text_from_file(self, file: Any) -> List[Document]:
|
|
"""Split HTML content from a file into a list of Document objects.
|
|
|
|
Args:
|
|
file: A file path or a file-like object containing HTML content.
|
|
|
|
Returns:
|
|
A list of split Document objects.
|
|
"""
|
|
file_content = file.getvalue()
|
|
file_content = self.convert_possible_tags_to_header(file_content)
|
|
sections = self.split_html_by_headers(file_content)
|
|
|
|
return [
|
|
Document(
|
|
cast(str, section["content"]),
|
|
metadata={
|
|
self.headers_to_split_on[str(section["tag_name"])]: section[
|
|
"header"
|
|
]
|
|
},
|
|
)
|
|
for section in sections
|
|
]
|
|
|
|
|
|
@beta()
|
|
class HTMLSemanticPreservingSplitter(BaseDocumentTransformer):
|
|
"""Split HTML content preserving semantic structure.
|
|
|
|
Splits HTML content by headers into generalized chunks, preserving semantic
|
|
structure. If chunks exceed the maximum chunk size, it uses
|
|
RecursiveCharacterTextSplitter for further splitting.
|
|
|
|
The splitter preserves full HTML elements (e.g., <table>, <ul>) and converts
|
|
links to Markdown-like links. It can also preserve images, videos, and audio
|
|
elements by converting them into Markdown format. Note that some chunks may
|
|
exceed the maximum size to maintain semantic integrity.
|
|
|
|
.. versionadded: 0.3.5
|
|
|
|
Args:
|
|
headers_to_split_on (List[Tuple[str, str]]): HTML headers (e.g., "h1", "h2")
|
|
that define content sections.
|
|
max_chunk_size (int): Maximum size for each chunk, with allowance for
|
|
exceeding this limit to preserve semantics.
|
|
chunk_overlap (int): Number of characters to overlap between chunks to ensure
|
|
contextual continuity.
|
|
separators (List[str]): Delimiters used by RecursiveCharacterTextSplitter for
|
|
further splitting.
|
|
elements_to_preserve (List[str]): HTML tags (e.g., <table>, <ul>) to remain
|
|
intact during splitting.
|
|
preserve_links (bool): Converts <a> tags to Markdown links ([text](url)).
|
|
preserve_images (bool): Converts <img> tags to Markdown images ().
|
|
preserve_videos (bool): Converts <video> tags to Markdown
|
|
video links ().
|
|
preserve_audio (bool): Converts <audio> tags to Markdown
|
|
audio links ().
|
|
custom_handlers (Dict[str, Callable[[Any], str]]): Optional custom handlers for
|
|
specific HTML tags, allowing tailored extraction or processing.
|
|
stopword_removal (bool): Optionally remove stopwords from the text.
|
|
stopword_lang (str): The language of stopwords to remove.
|
|
normalize_text (bool): Optionally normalize text
|
|
(e.g., lowercasing, removing punctuation).
|
|
external_metadata (Optional[Dict[str, str]]): Additional metadata to attach to
|
|
the Document objects.
|
|
allowlist_tags (Optional[List[str]]): Only these tags will be retained in
|
|
the HTML.
|
|
denylist_tags (Optional[List[str]]): These tags will be removed from the HTML.
|
|
preserve_parent_metadata (bool): Whether to pass through parent document
|
|
metadata to split documents when calling
|
|
``transform_documents/atransform_documents()``.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_text_splitters.html import HTMLSemanticPreservingSplitter
|
|
|
|
def custom_iframe_extractor(iframe_tag):
|
|
```
|
|
Custom handler function to extract the 'src' attribute from an <iframe> tag.
|
|
Converts the iframe to a Markdown-like link: [iframe:<src>](src).
|
|
|
|
Args:
|
|
iframe_tag (bs4.element.Tag): The <iframe> tag to be processed.
|
|
|
|
Returns:
|
|
str: A formatted string representing the iframe in Markdown-like format.
|
|
```
|
|
iframe_src = iframe_tag.get('src', '')
|
|
return f"[iframe:{iframe_src}]({iframe_src})"
|
|
|
|
text_splitter = HTMLSemanticPreservingSplitter(
|
|
headers_to_split_on=[("h1", "Header 1"), ("h2", "Header 2")],
|
|
max_chunk_size=500,
|
|
preserve_links=True,
|
|
preserve_images=True,
|
|
custom_handlers={"iframe": custom_iframe_extractor}
|
|
)
|
|
""" # noqa: E501, D214
|
|
|
|
def __init__(
|
|
self,
|
|
headers_to_split_on: List[Tuple[str, str]],
|
|
*,
|
|
max_chunk_size: int = 1000,
|
|
chunk_overlap: int = 0,
|
|
separators: Optional[List[str]] = None,
|
|
elements_to_preserve: Optional[List[str]] = None,
|
|
preserve_links: bool = False,
|
|
preserve_images: bool = False,
|
|
preserve_videos: bool = False,
|
|
preserve_audio: bool = False,
|
|
custom_handlers: Optional[Dict[str, Callable[[Any], str]]] = None,
|
|
stopword_removal: bool = False,
|
|
stopword_lang: str = "english",
|
|
normalize_text: bool = False,
|
|
external_metadata: Optional[Dict[str, str]] = None,
|
|
allowlist_tags: Optional[List[str]] = None,
|
|
denylist_tags: Optional[List[str]] = None,
|
|
preserve_parent_metadata: bool = False,
|
|
):
|
|
"""Initialize splitter."""
|
|
try:
|
|
from bs4 import BeautifulSoup, Tag
|
|
|
|
self._BeautifulSoup = BeautifulSoup
|
|
self._Tag = Tag
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import BeautifulSoup. "
|
|
"Please install it with 'pip install bs4'."
|
|
)
|
|
|
|
self._headers_to_split_on = sorted(headers_to_split_on)
|
|
self._max_chunk_size = max_chunk_size
|
|
self._elements_to_preserve = elements_to_preserve or []
|
|
self._preserve_links = preserve_links
|
|
self._preserve_images = preserve_images
|
|
self._preserve_videos = preserve_videos
|
|
self._preserve_audio = preserve_audio
|
|
self._custom_handlers = custom_handlers or {}
|
|
self._stopword_removal = stopword_removal
|
|
self._stopword_lang = stopword_lang
|
|
self._normalize_text = normalize_text
|
|
self._external_metadata = external_metadata or {}
|
|
self._allowlist_tags = allowlist_tags
|
|
self._preserve_parent_metadata = preserve_parent_metadata
|
|
if allowlist_tags:
|
|
self._allowlist_tags = list(
|
|
set(allowlist_tags + [header[0] for header in headers_to_split_on])
|
|
)
|
|
self._denylist_tags = denylist_tags
|
|
if denylist_tags:
|
|
self._denylist_tags = [
|
|
tag
|
|
for tag in denylist_tags
|
|
if tag not in [header[0] for header in headers_to_split_on]
|
|
]
|
|
if separators:
|
|
self._recursive_splitter = RecursiveCharacterTextSplitter(
|
|
separators=separators,
|
|
chunk_size=max_chunk_size,
|
|
chunk_overlap=chunk_overlap,
|
|
)
|
|
else:
|
|
self._recursive_splitter = RecursiveCharacterTextSplitter(
|
|
chunk_size=max_chunk_size, chunk_overlap=chunk_overlap
|
|
)
|
|
|
|
if self._stopword_removal:
|
|
try:
|
|
import nltk # type: ignore
|
|
from nltk.corpus import stopwords # type: ignore
|
|
|
|
nltk.download("stopwords")
|
|
self._stopwords = set(stopwords.words(self._stopword_lang))
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import nltk. Please install it with 'pip install nltk'."
|
|
)
|
|
|
|
def split_text(self, text: str) -> List[Document]:
|
|
"""Splits the provided HTML text into smaller chunks based on the configuration.
|
|
|
|
Args:
|
|
text (str): The HTML content to be split.
|
|
|
|
Returns:
|
|
List[Document]: A list of Document objects containing the split content.
|
|
"""
|
|
soup = self._BeautifulSoup(text, "html.parser")
|
|
|
|
self._process_media(soup)
|
|
|
|
if self._preserve_links:
|
|
self._process_links(soup)
|
|
|
|
if self._allowlist_tags or self._denylist_tags:
|
|
self._filter_tags(soup)
|
|
|
|
return self._process_html(soup)
|
|
|
|
def transform_documents(
|
|
self, documents: Sequence[Document], **kwargs: Any
|
|
) -> List[Document]:
|
|
"""Transform sequence of documents by splitting them."""
|
|
transformed = []
|
|
for doc in documents:
|
|
splits = self.split_text(doc.page_content)
|
|
if self._preserve_parent_metadata:
|
|
splits = [
|
|
Document(
|
|
page_content=split_doc.page_content,
|
|
metadata={**doc.metadata, **split_doc.metadata},
|
|
)
|
|
for split_doc in splits
|
|
]
|
|
transformed.extend(splits)
|
|
return transformed
|
|
|
|
def _process_media(self, soup: Any) -> None:
|
|
"""Processes the media elements.
|
|
|
|
Process elements in the HTML content by wrapping them in a <media-wrapper> tag
|
|
and converting them to Markdown format.
|
|
|
|
Args:
|
|
soup (Any): Parsed HTML content using BeautifulSoup.
|
|
"""
|
|
if self._preserve_images:
|
|
for img_tag in soup.find_all("img"):
|
|
img_src = img_tag.get("src", "")
|
|
markdown_img = f""
|
|
wrapper = soup.new_tag("media-wrapper")
|
|
wrapper.string = markdown_img
|
|
img_tag.replace_with(wrapper)
|
|
|
|
if self._preserve_videos:
|
|
for video_tag in soup.find_all("video"):
|
|
video_src = video_tag.get("src", "")
|
|
markdown_video = f""
|
|
wrapper = soup.new_tag("media-wrapper")
|
|
wrapper.string = markdown_video
|
|
video_tag.replace_with(wrapper)
|
|
|
|
if self._preserve_audio:
|
|
for audio_tag in soup.find_all("audio"):
|
|
audio_src = audio_tag.get("src", "")
|
|
markdown_audio = f""
|
|
wrapper = soup.new_tag("media-wrapper")
|
|
wrapper.string = markdown_audio
|
|
audio_tag.replace_with(wrapper)
|
|
|
|
def _process_links(self, soup: Any) -> None:
|
|
"""Processes the links in the HTML content.
|
|
|
|
Args:
|
|
soup (Any): Parsed HTML content using BeautifulSoup.
|
|
"""
|
|
for a_tag in soup.find_all("a"):
|
|
a_href = a_tag.get("href", "")
|
|
a_text = a_tag.get_text(strip=True)
|
|
markdown_link = f"[{a_text}]({a_href})"
|
|
wrapper = soup.new_tag("link-wrapper")
|
|
wrapper.string = markdown_link
|
|
a_tag.replace_with(markdown_link)
|
|
|
|
def _filter_tags(self, soup: Any) -> None:
|
|
"""Filters the HTML content based on the allowlist and denylist tags.
|
|
|
|
Args:
|
|
soup (Any): Parsed HTML content using BeautifulSoup.
|
|
"""
|
|
if self._allowlist_tags:
|
|
for tag in soup.find_all(True):
|
|
if tag.name not in self._allowlist_tags:
|
|
tag.decompose()
|
|
|
|
if self._denylist_tags:
|
|
for tag in soup.find_all(self._denylist_tags):
|
|
tag.decompose()
|
|
|
|
def _normalize_and_clean_text(self, text: str) -> str:
|
|
"""Normalizes the text by removing extra spaces and newlines.
|
|
|
|
Args:
|
|
text (str): The text to be normalized.
|
|
|
|
Returns:
|
|
str: The normalized text.
|
|
"""
|
|
if self._normalize_text:
|
|
text = text.lower()
|
|
text = re.sub(r"[^\w\s]", "", text)
|
|
text = re.sub(r"\s+", " ", text).strip()
|
|
|
|
if self._stopword_removal:
|
|
text = " ".join(
|
|
[word for word in text.split() if word not in self._stopwords]
|
|
)
|
|
|
|
return text
|
|
|
|
def _process_html(self, soup: Any) -> List[Document]:
|
|
"""Processes the HTML content using BeautifulSoup and splits it using headers.
|
|
|
|
Args:
|
|
soup (Any): Parsed HTML content using BeautifulSoup.
|
|
|
|
Returns:
|
|
List[Document]: A list of Document objects containing the split content.
|
|
"""
|
|
documents: List[Document] = []
|
|
current_headers: Dict[str, str] = {}
|
|
current_content: List[str] = []
|
|
preserved_elements: Dict[str, str] = {}
|
|
placeholder_count: int = 0
|
|
|
|
def _get_element_text(element: Any) -> str:
|
|
"""Recursively extracts and processes the text of an element.
|
|
|
|
Applies custom handlers where applicable, and ensures correct spacing.
|
|
|
|
Args:
|
|
element (Any): The HTML element to process.
|
|
|
|
Returns:
|
|
str: The processed text of the element.
|
|
"""
|
|
if element.name in self._custom_handlers:
|
|
return self._custom_handlers[element.name](element)
|
|
|
|
text = ""
|
|
|
|
if element.name is not None:
|
|
for child in element.children:
|
|
child_text = _get_element_text(child).strip()
|
|
if text and child_text:
|
|
text += " "
|
|
text += child_text
|
|
elif element.string:
|
|
text += element.string
|
|
|
|
return self._normalize_and_clean_text(text)
|
|
|
|
elements = soup.find_all(recursive=False)
|
|
|
|
def _process_element(
|
|
element: List[Any],
|
|
documents: List[Document],
|
|
current_headers: Dict[str, str],
|
|
current_content: List[str],
|
|
preserved_elements: Dict[str, str],
|
|
placeholder_count: int,
|
|
) -> Tuple[List[Document], Dict[str, str], List[str], Dict[str, str], int]:
|
|
for elem in element:
|
|
if elem.name.lower() in ["html", "body", "div", "main"]:
|
|
children = elem.find_all(recursive=False)
|
|
(
|
|
documents,
|
|
current_headers,
|
|
current_content,
|
|
preserved_elements,
|
|
placeholder_count,
|
|
) = _process_element(
|
|
children,
|
|
documents,
|
|
current_headers,
|
|
current_content,
|
|
preserved_elements,
|
|
placeholder_count,
|
|
)
|
|
continue
|
|
|
|
if elem.name in [h[0] for h in self._headers_to_split_on]:
|
|
if current_content:
|
|
documents.extend(
|
|
self._create_documents(
|
|
current_headers,
|
|
" ".join(current_content),
|
|
preserved_elements,
|
|
)
|
|
)
|
|
current_content.clear()
|
|
preserved_elements.clear()
|
|
header_name = elem.get_text(strip=True)
|
|
current_headers = {
|
|
dict(self._headers_to_split_on)[elem.name]: header_name
|
|
}
|
|
elif elem.name in self._elements_to_preserve:
|
|
placeholder = f"PRESERVED_{placeholder_count}"
|
|
preserved_elements[placeholder] = _get_element_text(elem)
|
|
current_content.append(placeholder)
|
|
placeholder_count += 1
|
|
else:
|
|
content = _get_element_text(elem)
|
|
if content:
|
|
current_content.append(content)
|
|
|
|
return (
|
|
documents,
|
|
current_headers,
|
|
current_content,
|
|
preserved_elements,
|
|
placeholder_count,
|
|
)
|
|
|
|
# Process the elements
|
|
(
|
|
documents,
|
|
current_headers,
|
|
current_content,
|
|
preserved_elements,
|
|
placeholder_count,
|
|
) = _process_element(
|
|
elements,
|
|
documents,
|
|
current_headers,
|
|
current_content,
|
|
preserved_elements,
|
|
placeholder_count,
|
|
)
|
|
|
|
# Handle any remaining content
|
|
if current_content:
|
|
documents.extend(
|
|
self._create_documents(
|
|
current_headers,
|
|
" ".join(current_content),
|
|
preserved_elements,
|
|
)
|
|
)
|
|
|
|
return documents
|
|
|
|
def _create_documents(
|
|
self, headers: dict, content: str, preserved_elements: dict
|
|
) -> List[Document]:
|
|
"""Creates Document objects from the provided headers, content, and elements.
|
|
|
|
Args:
|
|
headers (dict): The headers to attach as metadata to the Document.
|
|
content (str): The content of the Document.
|
|
preserved_elements (dict): Preserved elements to be reinserted
|
|
into the content.
|
|
|
|
Returns:
|
|
List[Document]: A list of Document objects.
|
|
"""
|
|
content = re.sub(r"\s+", " ", content).strip()
|
|
|
|
metadata = {**headers, **self._external_metadata}
|
|
|
|
if len(content) <= self._max_chunk_size:
|
|
page_content = self._reinsert_preserved_elements(
|
|
content, preserved_elements
|
|
)
|
|
return [Document(page_content=page_content, metadata=metadata)]
|
|
else:
|
|
return self._further_split_chunk(content, metadata, preserved_elements)
|
|
|
|
def _further_split_chunk(
|
|
self, content: str, metadata: dict, preserved_elements: dict
|
|
) -> List[Document]:
|
|
"""Further splits the content into smaller chunks.
|
|
|
|
Args:
|
|
content (str): The content to be split.
|
|
metadata (dict): Metadata to attach to each chunk.
|
|
preserved_elements (dict): Preserved elements
|
|
to be reinserted into each chunk.
|
|
|
|
Returns:
|
|
List[Document]: A list of Document objects containing the split content.
|
|
"""
|
|
splits = self._recursive_splitter.split_text(content)
|
|
result = []
|
|
|
|
for split in splits:
|
|
split_with_preserved = self._reinsert_preserved_elements(
|
|
split, preserved_elements
|
|
)
|
|
if split_with_preserved.strip():
|
|
result.append(
|
|
Document(
|
|
page_content=split_with_preserved.strip(),
|
|
metadata=metadata,
|
|
)
|
|
)
|
|
|
|
return result
|
|
|
|
def _reinsert_preserved_elements(
|
|
self, content: str, preserved_elements: dict
|
|
) -> str:
|
|
"""Reinserts preserved elements into the content into their original positions.
|
|
|
|
Args:
|
|
content (str): The content where placeholders need to be replaced.
|
|
preserved_elements (dict): Preserved elements to be reinserted.
|
|
|
|
Returns:
|
|
str: The content with placeholders replaced by preserved elements.
|
|
"""
|
|
for placeholder, preserved_content in preserved_elements.items():
|
|
content = content.replace(placeholder, preserved_content.strip())
|
|
return content
|
|
|
|
|
|
# %%
|