mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-09 17:18:31 +00:00
```python """python scripts/update_mypy_ruff.py""" import glob import tomllib from pathlib import Path import toml import subprocess import re ROOT_DIR = Path(__file__).parents[1] def main(): for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True): print(path) with open(path, "rb") as f: pyproject = tomllib.load(f) try: pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = ( "^1.10" ) pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = ( "^0.5" ) except KeyError: continue with open(path, "w") as f: toml.dump(pyproject, f) cwd = "/".join(path.split("/")[:-1]) completed = subprocess.run( "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color", cwd=cwd, shell=True, capture_output=True, text=True, ) logs = completed.stdout.split("\n") to_ignore = {} for l in logs: if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l): path, line_no, error_type = re.match( "^(.*)\:(\d+)\: error:.*\[(.*)\]", l ).groups() if (path, line_no) in to_ignore: to_ignore[(path, line_no)].append(error_type) else: to_ignore[(path, line_no)] = [error_type] print(len(to_ignore)) for (error_path, line_no), error_types in to_ignore.items(): all_errors = ", ".join(error_types) full_path = f"{cwd}/{error_path}" try: with open(full_path, "r") as f: file_lines = f.readlines() except FileNotFoundError: continue file_lines[int(line_no) - 1] = ( file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n" ) with open(full_path, "w") as f: f.write("".join(file_lines)) subprocess.run( "poetry run ruff format .; poetry run ruff --select I --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) if __name__ == "__main__": main() ```
125 lines
3.6 KiB
Python
125 lines
3.6 KiB
Python
"""Integration tests for the langchain tracer module."""
|
|
|
|
import asyncio
|
|
import os
|
|
|
|
from aiohttp import ClientSession
|
|
|
|
from langchain_community.callbacks import wandb_tracing_enabled
|
|
from langchain_community.llms import OpenAI
|
|
|
|
questions = [
|
|
(
|
|
"Who won the US Open men's final in 2019? "
|
|
"What is his age raised to the 0.334 power?"
|
|
),
|
|
(
|
|
"Who is Olivia Wilde's boyfriend? "
|
|
"What is his current age raised to the 0.23 power?"
|
|
),
|
|
(
|
|
"Who won the most recent formula 1 grand prix? "
|
|
"What is their age raised to the 0.23 power?"
|
|
),
|
|
(
|
|
"Who won the US Open women's final in 2019? "
|
|
"What is her age raised to the 0.34 power?"
|
|
),
|
|
("Who is Beyonce's husband? " "What is his age raised to the 0.19 power?"),
|
|
]
|
|
|
|
|
|
def test_tracing_sequential() -> None:
|
|
from langchain.agents import AgentType, initialize_agent, load_tools
|
|
|
|
os.environ["LANGCHAIN_WANDB_TRACING"] = "true"
|
|
os.environ["WANDB_PROJECT"] = "langchain-tracing"
|
|
|
|
for q in questions[:3]:
|
|
llm = OpenAI(temperature=0)
|
|
tools = load_tools(
|
|
["llm-math", "serpapi"],
|
|
llm=llm,
|
|
)
|
|
agent = initialize_agent(
|
|
tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
|
|
)
|
|
agent.run(q)
|
|
|
|
|
|
def test_tracing_session_env_var() -> None:
|
|
from langchain.agents import AgentType, initialize_agent, load_tools
|
|
|
|
os.environ["LANGCHAIN_WANDB_TRACING"] = "true"
|
|
|
|
llm = OpenAI(temperature=0)
|
|
tools = load_tools(
|
|
["llm-math", "serpapi"],
|
|
llm=llm,
|
|
)
|
|
agent = initialize_agent(
|
|
tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
|
|
)
|
|
agent.run(questions[0])
|
|
|
|
|
|
async def test_tracing_concurrent() -> None:
|
|
from langchain.agents import AgentType, initialize_agent, load_tools
|
|
|
|
os.environ["LANGCHAIN_WANDB_TRACING"] = "true"
|
|
aiosession = ClientSession()
|
|
llm = OpenAI(temperature=0)
|
|
async_tools = load_tools(
|
|
["llm-math", "serpapi"],
|
|
llm=llm,
|
|
aiosession=aiosession,
|
|
)
|
|
agent = initialize_agent(
|
|
async_tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
|
|
)
|
|
tasks = [agent.arun(q) for q in questions[:3]]
|
|
await asyncio.gather(*tasks)
|
|
await aiosession.close()
|
|
|
|
|
|
def test_tracing_context_manager() -> None:
|
|
from langchain.agents import AgentType, initialize_agent, load_tools
|
|
|
|
llm = OpenAI(temperature=0)
|
|
tools = load_tools(
|
|
["llm-math", "serpapi"],
|
|
llm=llm,
|
|
)
|
|
agent = initialize_agent(
|
|
tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
|
|
)
|
|
if "LANGCHAIN_WANDB_TRACING" in os.environ:
|
|
del os.environ["LANGCHAIN_WANDB_TRACING"]
|
|
with wandb_tracing_enabled():
|
|
agent.run(questions[0]) # this should be traced
|
|
|
|
agent.run(questions[0]) # this should not be traced
|
|
|
|
|
|
async def test_tracing_context_manager_async() -> None:
|
|
from langchain.agents import AgentType, initialize_agent, load_tools
|
|
|
|
llm = OpenAI(temperature=0)
|
|
async_tools = load_tools(
|
|
["llm-math", "serpapi"],
|
|
llm=llm,
|
|
)
|
|
agent = initialize_agent(
|
|
async_tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
|
|
)
|
|
if "LANGCHAIN_WANDB_TRACING" in os.environ:
|
|
del os.environ["LANGCHAIN_TRACING"]
|
|
|
|
# start a background task
|
|
task = asyncio.create_task(agent.arun(questions[0])) # this should not be traced
|
|
with wandb_tracing_enabled():
|
|
tasks = [agent.arun(q) for q in questions[1:4]] # these should be traced
|
|
await asyncio.gather(*tasks)
|
|
|
|
await task
|