mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-06 15:13:56 +00:00
```python """python scripts/update_mypy_ruff.py""" import glob import tomllib from pathlib import Path import toml import subprocess import re ROOT_DIR = Path(__file__).parents[1] def main(): for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True): print(path) with open(path, "rb") as f: pyproject = tomllib.load(f) try: pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = ( "^1.10" ) pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = ( "^0.5" ) except KeyError: continue with open(path, "w") as f: toml.dump(pyproject, f) cwd = "/".join(path.split("/")[:-1]) completed = subprocess.run( "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color", cwd=cwd, shell=True, capture_output=True, text=True, ) logs = completed.stdout.split("\n") to_ignore = {} for l in logs: if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l): path, line_no, error_type = re.match( "^(.*)\:(\d+)\: error:.*\[(.*)\]", l ).groups() if (path, line_no) in to_ignore: to_ignore[(path, line_no)].append(error_type) else: to_ignore[(path, line_no)] = [error_type] print(len(to_ignore)) for (error_path, line_no), error_types in to_ignore.items(): all_errors = ", ".join(error_types) full_path = f"{cwd}/{error_path}" try: with open(full_path, "r") as f: file_lines = f.readlines() except FileNotFoundError: continue file_lines[int(line_no) - 1] = ( file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n" ) with open(full_path, "w") as f: f.write("".join(file_lines)) subprocess.run( "poetry run ruff format .; poetry run ruff --select I --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) if __name__ == "__main__": main() ```
117 lines
3.7 KiB
Python
117 lines
3.7 KiB
Python
"""test Databricks LLM"""
|
|
|
|
from pathlib import Path
|
|
from typing import Any, Dict
|
|
|
|
import pytest
|
|
from pytest import MonkeyPatch
|
|
|
|
from langchain_community.llms.databricks import (
|
|
Databricks,
|
|
_load_pickled_fn_from_hex_string,
|
|
)
|
|
from langchain_community.llms.loading import load_llm
|
|
from tests.integration_tests.llms.utils import assert_llm_equality
|
|
|
|
|
|
class MockDatabricksServingEndpointClient:
|
|
def __init__(
|
|
self,
|
|
host: str,
|
|
api_token: str,
|
|
endpoint_name: str,
|
|
databricks_uri: str,
|
|
task: str,
|
|
):
|
|
self.host = host
|
|
self.api_token = api_token
|
|
self.endpoint_name = endpoint_name
|
|
self.databricks_uri = databricks_uri
|
|
self.task = task
|
|
|
|
|
|
def transform_input(**request: Any) -> Dict[str, Any]:
|
|
request["messages"] = [{"role": "user", "content": request["prompt"]}]
|
|
del request["prompt"]
|
|
return request
|
|
|
|
|
|
@pytest.mark.requires("cloudpickle")
|
|
def test_serde_transform_input_fn(monkeypatch: MonkeyPatch) -> None:
|
|
import cloudpickle
|
|
|
|
monkeypatch.setattr(
|
|
"langchain_community.llms.databricks._DatabricksServingEndpointClient",
|
|
MockDatabricksServingEndpointClient,
|
|
)
|
|
monkeypatch.setenv("DATABRICKS_HOST", "my-default-host")
|
|
monkeypatch.setenv("DATABRICKS_TOKEN", "my-default-token")
|
|
|
|
llm = Databricks(
|
|
endpoint_name="some_end_point_name", # Value should not matter for this test
|
|
transform_input_fn=transform_input,
|
|
allow_dangerous_deserialization=True,
|
|
)
|
|
params = llm._default_params
|
|
pickled_string = cloudpickle.dumps(transform_input).hex()
|
|
assert params["transform_input_fn"] == pickled_string
|
|
|
|
request = {"prompt": "What is the meaning of life?"}
|
|
fn = _load_pickled_fn_from_hex_string(
|
|
data=params["transform_input_fn"],
|
|
allow_dangerous_deserialization=True,
|
|
)
|
|
assert fn(**request) == transform_input(**request)
|
|
|
|
|
|
def test_saving_loading_llm(monkeypatch: MonkeyPatch, tmp_path: Path) -> None:
|
|
monkeypatch.setattr(
|
|
"langchain_community.llms.databricks._DatabricksServingEndpointClient",
|
|
MockDatabricksServingEndpointClient,
|
|
)
|
|
monkeypatch.setenv("DATABRICKS_HOST", "my-default-host")
|
|
monkeypatch.setenv("DATABRICKS_TOKEN", "my-default-token")
|
|
|
|
llm = Databricks(
|
|
endpoint_name="chat",
|
|
temperature=0.1,
|
|
)
|
|
llm.save(file_path=tmp_path / "databricks.yaml")
|
|
|
|
loaded_llm = load_llm(tmp_path / "databricks.yaml")
|
|
assert_llm_equality(llm, loaded_llm)
|
|
|
|
|
|
@pytest.mark.requires("cloudpickle")
|
|
def test_saving_loading_llm_dangerous_serde_check(
|
|
monkeypatch: MonkeyPatch, tmp_path: Path
|
|
) -> None:
|
|
monkeypatch.setattr(
|
|
"langchain_community.llms.databricks._DatabricksServingEndpointClient",
|
|
MockDatabricksServingEndpointClient,
|
|
)
|
|
monkeypatch.setenv("DATABRICKS_HOST", "my-default-host")
|
|
monkeypatch.setenv("DATABRICKS_TOKEN", "my-default-token")
|
|
|
|
llm1 = Databricks(
|
|
endpoint_name="chat",
|
|
temperature=0.1,
|
|
transform_input_fn=lambda x, y, **kwargs: {},
|
|
)
|
|
llm1.save(file_path=tmp_path / "databricks1.yaml")
|
|
|
|
with pytest.raises(ValueError, match="This code relies on the pickle module."):
|
|
load_llm(tmp_path / "databricks1.yaml")
|
|
|
|
load_llm(tmp_path / "databricks1.yaml", allow_dangerous_deserialization=True)
|
|
|
|
llm2 = Databricks(
|
|
endpoint_name="chat", temperature=0.1, transform_output_fn=lambda x: "test"
|
|
)
|
|
llm2.save(file_path=tmp_path / "databricks2.yaml")
|
|
|
|
with pytest.raises(ValueError, match="This code relies on the pickle module."):
|
|
load_llm(tmp_path / "databricks2.yaml")
|
|
|
|
load_llm(tmp_path / "databricks2.yaml", allow_dangerous_deserialization=True)
|