langchain/libs/community/tests/unit_tests/llms/test_databricks.py
Bagatur a0c2281540
infra: update mypy 1.10, ruff 0.5 (#23721)
```python
"""python scripts/update_mypy_ruff.py"""
import glob
import tomllib
from pathlib import Path

import toml
import subprocess
import re

ROOT_DIR = Path(__file__).parents[1]


def main():
    for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True):
        print(path)
        with open(path, "rb") as f:
            pyproject = tomllib.load(f)
        try:
            pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = (
                "^1.10"
            )
            pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = (
                "^0.5"
            )
        except KeyError:
            continue
        with open(path, "w") as f:
            toml.dump(pyproject, f)
        cwd = "/".join(path.split("/")[:-1])
        completed = subprocess.run(
            "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )
        logs = completed.stdout.split("\n")

        to_ignore = {}
        for l in logs:
            if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l):
                path, line_no, error_type = re.match(
                    "^(.*)\:(\d+)\: error:.*\[(.*)\]", l
                ).groups()
                if (path, line_no) in to_ignore:
                    to_ignore[(path, line_no)].append(error_type)
                else:
                    to_ignore[(path, line_no)] = [error_type]
        print(len(to_ignore))
        for (error_path, line_no), error_types in to_ignore.items():
            all_errors = ", ".join(error_types)
            full_path = f"{cwd}/{error_path}"
            try:
                with open(full_path, "r") as f:
                    file_lines = f.readlines()
            except FileNotFoundError:
                continue
            file_lines[int(line_no) - 1] = (
                file_lines[int(line_no) - 1][:-1] + f"  # type: ignore[{all_errors}]\n"
            )
            with open(full_path, "w") as f:
                f.write("".join(file_lines))

        subprocess.run(
            "poetry run ruff format .; poetry run ruff --select I --fix .",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )


if __name__ == "__main__":
    main()

```
2024-07-03 10:33:27 -07:00

117 lines
3.7 KiB
Python

"""test Databricks LLM"""
from pathlib import Path
from typing import Any, Dict
import pytest
from pytest import MonkeyPatch
from langchain_community.llms.databricks import (
Databricks,
_load_pickled_fn_from_hex_string,
)
from langchain_community.llms.loading import load_llm
from tests.integration_tests.llms.utils import assert_llm_equality
class MockDatabricksServingEndpointClient:
def __init__(
self,
host: str,
api_token: str,
endpoint_name: str,
databricks_uri: str,
task: str,
):
self.host = host
self.api_token = api_token
self.endpoint_name = endpoint_name
self.databricks_uri = databricks_uri
self.task = task
def transform_input(**request: Any) -> Dict[str, Any]:
request["messages"] = [{"role": "user", "content": request["prompt"]}]
del request["prompt"]
return request
@pytest.mark.requires("cloudpickle")
def test_serde_transform_input_fn(monkeypatch: MonkeyPatch) -> None:
import cloudpickle
monkeypatch.setattr(
"langchain_community.llms.databricks._DatabricksServingEndpointClient",
MockDatabricksServingEndpointClient,
)
monkeypatch.setenv("DATABRICKS_HOST", "my-default-host")
monkeypatch.setenv("DATABRICKS_TOKEN", "my-default-token")
llm = Databricks(
endpoint_name="some_end_point_name", # Value should not matter for this test
transform_input_fn=transform_input,
allow_dangerous_deserialization=True,
)
params = llm._default_params
pickled_string = cloudpickle.dumps(transform_input).hex()
assert params["transform_input_fn"] == pickled_string
request = {"prompt": "What is the meaning of life?"}
fn = _load_pickled_fn_from_hex_string(
data=params["transform_input_fn"],
allow_dangerous_deserialization=True,
)
assert fn(**request) == transform_input(**request)
def test_saving_loading_llm(monkeypatch: MonkeyPatch, tmp_path: Path) -> None:
monkeypatch.setattr(
"langchain_community.llms.databricks._DatabricksServingEndpointClient",
MockDatabricksServingEndpointClient,
)
monkeypatch.setenv("DATABRICKS_HOST", "my-default-host")
monkeypatch.setenv("DATABRICKS_TOKEN", "my-default-token")
llm = Databricks(
endpoint_name="chat",
temperature=0.1,
)
llm.save(file_path=tmp_path / "databricks.yaml")
loaded_llm = load_llm(tmp_path / "databricks.yaml")
assert_llm_equality(llm, loaded_llm)
@pytest.mark.requires("cloudpickle")
def test_saving_loading_llm_dangerous_serde_check(
monkeypatch: MonkeyPatch, tmp_path: Path
) -> None:
monkeypatch.setattr(
"langchain_community.llms.databricks._DatabricksServingEndpointClient",
MockDatabricksServingEndpointClient,
)
monkeypatch.setenv("DATABRICKS_HOST", "my-default-host")
monkeypatch.setenv("DATABRICKS_TOKEN", "my-default-token")
llm1 = Databricks(
endpoint_name="chat",
temperature=0.1,
transform_input_fn=lambda x, y, **kwargs: {},
)
llm1.save(file_path=tmp_path / "databricks1.yaml")
with pytest.raises(ValueError, match="This code relies on the pickle module."):
load_llm(tmp_path / "databricks1.yaml")
load_llm(tmp_path / "databricks1.yaml", allow_dangerous_deserialization=True)
llm2 = Databricks(
endpoint_name="chat", temperature=0.1, transform_output_fn=lambda x: "test"
)
llm2.save(file_path=tmp_path / "databricks2.yaml")
with pytest.raises(ValueError, match="This code relies on the pickle module."):
load_llm(tmp_path / "databricks2.yaml")
load_llm(tmp_path / "databricks2.yaml", allow_dangerous_deserialization=True)