mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-10-31 07:41:40 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			109 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			109 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| {
 | |
|  "cells": [
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "683953b3",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "# Milvus\n",
 | |
|     "\n",
 | |
|     "This notebook shows how to use functionality related to the Milvus vector database.\n",
 | |
|     "\n",
 | |
|     "To run, you should have a Milvus instance up and running: https://milvus.io/docs/install_standalone-docker.md"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 1,
 | |
|    "id": "aac9563e",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "from langchain.embeddings.openai import OpenAIEmbeddings\n",
 | |
|     "from langchain.text_splitter import CharacterTextSplitter\n",
 | |
|     "from langchain.vectorstores import Milvus\n",
 | |
|     "from langchain.document_loaders import TextLoader"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 2,
 | |
|    "id": "a3c3999a",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "from langchain.document_loaders import TextLoader\n",
 | |
|     "loader = TextLoader('../../state_of_the_union.txt')\n",
 | |
|     "documents = loader.load()\n",
 | |
|     "text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
 | |
|     "docs = text_splitter.split_documents(documents)\n",
 | |
|     "\n",
 | |
|     "embeddings = OpenAIEmbeddings()"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "dcf88bdf",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "vector_db = Milvus.from_documents(\n",
 | |
|     "    docs,\n",
 | |
|     "    embeddings,\n",
 | |
|     "    connection_args={\"host\": \"127.0.0.1\", \"port\": \"19530\"},\n",
 | |
|     ")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "a8c513ab",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "docs = vector_db.similarity_search(query)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "fc516993",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "docs[0]"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "a359ed74",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": []
 | |
|   }
 | |
|  ],
 | |
|  "metadata": {
 | |
|   "kernelspec": {
 | |
|    "display_name": "Python 3 (ipykernel)",
 | |
|    "language": "python",
 | |
|    "name": "python3"
 | |
|   },
 | |
|   "language_info": {
 | |
|    "codemirror_mode": {
 | |
|     "name": "ipython",
 | |
|     "version": 3
 | |
|    },
 | |
|    "file_extension": ".py",
 | |
|    "mimetype": "text/x-python",
 | |
|    "name": "python",
 | |
|    "nbconvert_exporter": "python",
 | |
|    "pygments_lexer": "ipython3",
 | |
|    "version": "3.9.1"
 | |
|   }
 | |
|  },
 | |
|  "nbformat": 4,
 | |
|  "nbformat_minor": 5
 | |
| }
 |