mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-11-04 02:03:32 +00:00 
			
		
		
		
	The provided example uses the default `max_length` of `20` tokens, which leads to the example generation getting cut off. 20 tokens is way too short to show CoT reasoning, so I boosted it to `64`. Without knowing HF's API well, it can be hard to figure out just where those `model_kwargs` come from, and `max_length` is a super critical one.
		
			
				
	
	
		
			72 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			72 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
{
 | 
						|
 "cells": [
 | 
						|
  {
 | 
						|
   "cell_type": "markdown",
 | 
						|
   "id": "959300d4",
 | 
						|
   "metadata": {},
 | 
						|
   "source": [
 | 
						|
    "# Hugging Face Hub\n",
 | 
						|
    "\n",
 | 
						|
    "This example showcases how to connect to the Hugging Face Hub."
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 3,
 | 
						|
   "id": "3acf0069",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [
 | 
						|
    {
 | 
						|
     "name": "stdout",
 | 
						|
     "output_type": "stream",
 | 
						|
     "text": [
 | 
						|
      "The Seattle Seahawks won the Super Bowl in 2010. Justin Beiber was born in 2010. The final answer: Seattle Seahawks.\n"
 | 
						|
     ]
 | 
						|
    }
 | 
						|
   ],
 | 
						|
   "source": [
 | 
						|
    "from langchain import PromptTemplate, HuggingFaceHub, LLMChain\n",
 | 
						|
    "\n",
 | 
						|
    "template = \"\"\"Question: {question}\n",
 | 
						|
    "\n",
 | 
						|
    "Answer: Let's think step by step.\"\"\"\n",
 | 
						|
    "prompt = PromptTemplate(template=template, input_variables=[\"question\"])\n",
 | 
						|
    "llm_chain = LLMChain(prompt=prompt, llm=HuggingFaceHub(repo_id=\"google/flan-t5-xl\", model_kwargs={\"temperature\":0, \"max_length\":64}))\n",
 | 
						|
    "\n",
 | 
						|
    "question = \"What NFL team won the Super Bowl in the year Justin Beiber was born?\"\n",
 | 
						|
    "\n",
 | 
						|
    "print(llm_chain.run(question))"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": null,
 | 
						|
   "id": "ae4559c7",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": []
 | 
						|
  }
 | 
						|
 ],
 | 
						|
 "metadata": {
 | 
						|
  "kernelspec": {
 | 
						|
   "display_name": "Python 3 (ipykernel)",
 | 
						|
   "language": "python",
 | 
						|
   "name": "python3"
 | 
						|
  },
 | 
						|
  "language_info": {
 | 
						|
   "codemirror_mode": {
 | 
						|
    "name": "ipython",
 | 
						|
    "version": 3
 | 
						|
   },
 | 
						|
   "file_extension": ".py",
 | 
						|
   "mimetype": "text/x-python",
 | 
						|
   "name": "python",
 | 
						|
   "nbconvert_exporter": "python",
 | 
						|
   "pygments_lexer": "ipython3",
 | 
						|
   "version": "3.10.9"
 | 
						|
  }
 | 
						|
 },
 | 
						|
 "nbformat": 4,
 | 
						|
 "nbformat_minor": 5
 | 
						|
}
 |