mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-21 15:07:35 +00:00
Removed duplicate BaseModel dependencies in class inheritances. Also, sorted imports by `isort`.
856 lines
30 KiB
Python
856 lines
30 KiB
Python
"""Chain that takes in an input and produces an action and action input."""
|
|
from __future__ import annotations
|
|
|
|
import json
|
|
import logging
|
|
from abc import abstractmethod
|
|
from pathlib import Path
|
|
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
|
|
|
|
import yaml
|
|
from pydantic import BaseModel, root_validator
|
|
|
|
from langchain.agents.tools import InvalidTool
|
|
from langchain.callbacks.base import BaseCallbackManager
|
|
from langchain.chains.base import Chain
|
|
from langchain.chains.llm import LLMChain
|
|
from langchain.input import get_color_mapping
|
|
from langchain.prompts.base import BasePromptTemplate
|
|
from langchain.prompts.few_shot import FewShotPromptTemplate
|
|
from langchain.prompts.prompt import PromptTemplate
|
|
from langchain.schema import (
|
|
AgentAction,
|
|
AgentFinish,
|
|
BaseLanguageModel,
|
|
BaseMessage,
|
|
BaseOutputParser,
|
|
)
|
|
from langchain.tools.base import BaseTool
|
|
|
|
logger = logging.getLogger()
|
|
|
|
|
|
class BaseSingleActionAgent(BaseModel):
|
|
"""Base Agent class."""
|
|
|
|
@property
|
|
def return_values(self) -> List[str]:
|
|
"""Return values of the agent."""
|
|
return ["output"]
|
|
|
|
def get_allowed_tools(self) -> Optional[List[str]]:
|
|
return None
|
|
|
|
@abstractmethod
|
|
def plan(
|
|
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
|
|
) -> Union[AgentAction, AgentFinish]:
|
|
"""Given input, decided what to do.
|
|
|
|
Args:
|
|
intermediate_steps: Steps the LLM has taken to date,
|
|
along with observations
|
|
**kwargs: User inputs.
|
|
|
|
Returns:
|
|
Action specifying what tool to use.
|
|
"""
|
|
|
|
@abstractmethod
|
|
async def aplan(
|
|
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
|
|
) -> Union[AgentAction, AgentFinish]:
|
|
"""Given input, decided what to do.
|
|
|
|
Args:
|
|
intermediate_steps: Steps the LLM has taken to date,
|
|
along with observations
|
|
**kwargs: User inputs.
|
|
|
|
Returns:
|
|
Action specifying what tool to use.
|
|
"""
|
|
|
|
@property
|
|
@abstractmethod
|
|
def input_keys(self) -> List[str]:
|
|
"""Return the input keys.
|
|
|
|
:meta private:
|
|
"""
|
|
|
|
def return_stopped_response(
|
|
self,
|
|
early_stopping_method: str,
|
|
intermediate_steps: List[Tuple[AgentAction, str]],
|
|
**kwargs: Any,
|
|
) -> AgentFinish:
|
|
"""Return response when agent has been stopped due to max iterations."""
|
|
if early_stopping_method == "force":
|
|
# `force` just returns a constant string
|
|
return AgentFinish({"output": "Agent stopped due to max iterations."}, "")
|
|
else:
|
|
raise ValueError(
|
|
f"Got unsupported early_stopping_method `{early_stopping_method}`"
|
|
)
|
|
|
|
@property
|
|
def _agent_type(self) -> str:
|
|
"""Return Identifier of agent type."""
|
|
raise NotImplementedError
|
|
|
|
def dict(self, **kwargs: Any) -> Dict:
|
|
"""Return dictionary representation of agent."""
|
|
_dict = super().dict()
|
|
_dict["_type"] = self._agent_type
|
|
return _dict
|
|
|
|
def save(self, file_path: Union[Path, str]) -> None:
|
|
"""Save the agent.
|
|
|
|
Args:
|
|
file_path: Path to file to save the agent to.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
# If working with agent executor
|
|
agent.agent.save(file_path="path/agent.yaml")
|
|
"""
|
|
# Convert file to Path object.
|
|
if isinstance(file_path, str):
|
|
save_path = Path(file_path)
|
|
else:
|
|
save_path = file_path
|
|
|
|
directory_path = save_path.parent
|
|
directory_path.mkdir(parents=True, exist_ok=True)
|
|
|
|
# Fetch dictionary to save
|
|
agent_dict = self.dict()
|
|
|
|
if save_path.suffix == ".json":
|
|
with open(file_path, "w") as f:
|
|
json.dump(agent_dict, f, indent=4)
|
|
elif save_path.suffix == ".yaml":
|
|
with open(file_path, "w") as f:
|
|
yaml.dump(agent_dict, f, default_flow_style=False)
|
|
else:
|
|
raise ValueError(f"{save_path} must be json or yaml")
|
|
|
|
def tool_run_logging_kwargs(self) -> Dict:
|
|
return {}
|
|
|
|
|
|
class BaseMultiActionAgent(BaseModel):
|
|
"""Base Agent class."""
|
|
|
|
@property
|
|
def return_values(self) -> List[str]:
|
|
"""Return values of the agent."""
|
|
return ["output"]
|
|
|
|
def get_allowed_tools(self) -> Optional[List[str]]:
|
|
return None
|
|
|
|
@abstractmethod
|
|
def plan(
|
|
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
|
|
) -> Union[List[AgentAction], AgentFinish]:
|
|
"""Given input, decided what to do.
|
|
|
|
Args:
|
|
intermediate_steps: Steps the LLM has taken to date,
|
|
along with observations
|
|
**kwargs: User inputs.
|
|
|
|
Returns:
|
|
Actions specifying what tool to use.
|
|
"""
|
|
|
|
@abstractmethod
|
|
async def aplan(
|
|
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
|
|
) -> Union[List[AgentAction], AgentFinish]:
|
|
"""Given input, decided what to do.
|
|
|
|
Args:
|
|
intermediate_steps: Steps the LLM has taken to date,
|
|
along with observations
|
|
**kwargs: User inputs.
|
|
|
|
Returns:
|
|
Actions specifying what tool to use.
|
|
"""
|
|
|
|
@property
|
|
@abstractmethod
|
|
def input_keys(self) -> List[str]:
|
|
"""Return the input keys.
|
|
|
|
:meta private:
|
|
"""
|
|
|
|
def return_stopped_response(
|
|
self,
|
|
early_stopping_method: str,
|
|
intermediate_steps: List[Tuple[AgentAction, str]],
|
|
**kwargs: Any,
|
|
) -> AgentFinish:
|
|
"""Return response when agent has been stopped due to max iterations."""
|
|
if early_stopping_method == "force":
|
|
# `force` just returns a constant string
|
|
return AgentFinish({"output": "Agent stopped due to max iterations."}, "")
|
|
else:
|
|
raise ValueError(
|
|
f"Got unsupported early_stopping_method `{early_stopping_method}`"
|
|
)
|
|
|
|
@property
|
|
def _agent_type(self) -> str:
|
|
"""Return Identifier of agent type."""
|
|
raise NotImplementedError
|
|
|
|
def dict(self, **kwargs: Any) -> Dict:
|
|
"""Return dictionary representation of agent."""
|
|
_dict = super().dict()
|
|
_dict["_type"] = self._agent_type
|
|
return _dict
|
|
|
|
def save(self, file_path: Union[Path, str]) -> None:
|
|
"""Save the agent.
|
|
|
|
Args:
|
|
file_path: Path to file to save the agent to.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
# If working with agent executor
|
|
agent.agent.save(file_path="path/agent.yaml")
|
|
"""
|
|
# Convert file to Path object.
|
|
if isinstance(file_path, str):
|
|
save_path = Path(file_path)
|
|
else:
|
|
save_path = file_path
|
|
|
|
directory_path = save_path.parent
|
|
directory_path.mkdir(parents=True, exist_ok=True)
|
|
|
|
# Fetch dictionary to save
|
|
agent_dict = self.dict()
|
|
|
|
if save_path.suffix == ".json":
|
|
with open(file_path, "w") as f:
|
|
json.dump(agent_dict, f, indent=4)
|
|
elif save_path.suffix == ".yaml":
|
|
with open(file_path, "w") as f:
|
|
yaml.dump(agent_dict, f, default_flow_style=False)
|
|
else:
|
|
raise ValueError(f"{save_path} must be json or yaml")
|
|
|
|
def tool_run_logging_kwargs(self) -> Dict:
|
|
return {}
|
|
|
|
|
|
class AgentOutputParser(BaseOutputParser):
|
|
@abstractmethod
|
|
def parse(self, text: str) -> Union[AgentAction, AgentFinish]:
|
|
"""Parse text into agent action/finish."""
|
|
|
|
|
|
class LLMSingleActionAgent(BaseSingleActionAgent):
|
|
llm_chain: LLMChain
|
|
output_parser: AgentOutputParser
|
|
stop: List[str]
|
|
|
|
@property
|
|
def input_keys(self) -> List[str]:
|
|
return list(set(self.llm_chain.input_keys) - {"intermediate_steps"})
|
|
|
|
def plan(
|
|
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
|
|
) -> Union[AgentAction, AgentFinish]:
|
|
"""Given input, decided what to do.
|
|
|
|
Args:
|
|
intermediate_steps: Steps the LLM has taken to date,
|
|
along with observations
|
|
**kwargs: User inputs.
|
|
|
|
Returns:
|
|
Action specifying what tool to use.
|
|
"""
|
|
output = self.llm_chain.run(
|
|
intermediate_steps=intermediate_steps, stop=self.stop, **kwargs
|
|
)
|
|
return self.output_parser.parse(output)
|
|
|
|
async def aplan(
|
|
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
|
|
) -> Union[AgentAction, AgentFinish]:
|
|
"""Given input, decided what to do.
|
|
|
|
Args:
|
|
intermediate_steps: Steps the LLM has taken to date,
|
|
along with observations
|
|
**kwargs: User inputs.
|
|
|
|
Returns:
|
|
Action specifying what tool to use.
|
|
"""
|
|
output = await self.llm_chain.arun(
|
|
intermediate_steps=intermediate_steps, stop=self.stop, **kwargs
|
|
)
|
|
return self.output_parser.parse(output)
|
|
|
|
def tool_run_logging_kwargs(self) -> Dict:
|
|
return {
|
|
"llm_prefix": "",
|
|
"observation_prefix": "" if len(self.stop) == 0 else self.stop[0],
|
|
}
|
|
|
|
|
|
class Agent(BaseSingleActionAgent):
|
|
"""Class responsible for calling the language model and deciding the action.
|
|
|
|
This is driven by an LLMChain. The prompt in the LLMChain MUST include
|
|
a variable called "agent_scratchpad" where the agent can put its
|
|
intermediary work.
|
|
"""
|
|
|
|
llm_chain: LLMChain
|
|
allowed_tools: Optional[List[str]] = None
|
|
|
|
def get_allowed_tools(self) -> Optional[List[str]]:
|
|
return self.allowed_tools
|
|
|
|
@property
|
|
def return_values(self) -> List[str]:
|
|
return ["output"]
|
|
|
|
@abstractmethod
|
|
def _extract_tool_and_input(self, text: str) -> Optional[Tuple[str, str]]:
|
|
"""Extract tool and tool input from llm output."""
|
|
|
|
def _fix_text(self, text: str) -> str:
|
|
"""Fix the text."""
|
|
raise ValueError("fix_text not implemented for this agent.")
|
|
|
|
@property
|
|
def _stop(self) -> List[str]:
|
|
return [
|
|
f"\n{self.observation_prefix.rstrip()}",
|
|
f"\n\t{self.observation_prefix.rstrip()}",
|
|
]
|
|
|
|
def _construct_scratchpad(
|
|
self, intermediate_steps: List[Tuple[AgentAction, str]]
|
|
) -> Union[str, List[BaseMessage]]:
|
|
"""Construct the scratchpad that lets the agent continue its thought process."""
|
|
thoughts = ""
|
|
for action, observation in intermediate_steps:
|
|
thoughts += action.log
|
|
thoughts += f"\n{self.observation_prefix}{observation}\n{self.llm_prefix}"
|
|
return thoughts
|
|
|
|
def _get_next_action(self, full_inputs: Dict[str, str]) -> AgentAction:
|
|
full_output = self.llm_chain.predict(**full_inputs)
|
|
parsed_output = self._extract_tool_and_input(full_output)
|
|
while parsed_output is None:
|
|
full_output = self._fix_text(full_output)
|
|
full_inputs["agent_scratchpad"] += full_output
|
|
output = self.llm_chain.predict(**full_inputs)
|
|
full_output += output
|
|
parsed_output = self._extract_tool_and_input(full_output)
|
|
return AgentAction(
|
|
tool=parsed_output[0], tool_input=parsed_output[1], log=full_output
|
|
)
|
|
|
|
async def _aget_next_action(self, full_inputs: Dict[str, str]) -> AgentAction:
|
|
full_output = await self.llm_chain.apredict(**full_inputs)
|
|
parsed_output = self._extract_tool_and_input(full_output)
|
|
while parsed_output is None:
|
|
full_output = self._fix_text(full_output)
|
|
full_inputs["agent_scratchpad"] += full_output
|
|
output = await self.llm_chain.apredict(**full_inputs)
|
|
full_output += output
|
|
parsed_output = self._extract_tool_and_input(full_output)
|
|
return AgentAction(
|
|
tool=parsed_output[0], tool_input=parsed_output[1], log=full_output
|
|
)
|
|
|
|
def plan(
|
|
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
|
|
) -> Union[AgentAction, AgentFinish]:
|
|
"""Given input, decided what to do.
|
|
|
|
Args:
|
|
intermediate_steps: Steps the LLM has taken to date,
|
|
along with observations
|
|
**kwargs: User inputs.
|
|
|
|
Returns:
|
|
Action specifying what tool to use.
|
|
"""
|
|
full_inputs = self.get_full_inputs(intermediate_steps, **kwargs)
|
|
action = self._get_next_action(full_inputs)
|
|
if action.tool == self.finish_tool_name:
|
|
return AgentFinish({"output": action.tool_input}, action.log)
|
|
return action
|
|
|
|
async def aplan(
|
|
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
|
|
) -> Union[AgentAction, AgentFinish]:
|
|
"""Given input, decided what to do.
|
|
|
|
Args:
|
|
intermediate_steps: Steps the LLM has taken to date,
|
|
along with observations
|
|
**kwargs: User inputs.
|
|
|
|
Returns:
|
|
Action specifying what tool to use.
|
|
"""
|
|
full_inputs = self.get_full_inputs(intermediate_steps, **kwargs)
|
|
action = await self._aget_next_action(full_inputs)
|
|
if action.tool == self.finish_tool_name:
|
|
return AgentFinish({"output": action.tool_input}, action.log)
|
|
return action
|
|
|
|
def get_full_inputs(
|
|
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
|
|
) -> Dict[str, Any]:
|
|
"""Create the full inputs for the LLMChain from intermediate steps."""
|
|
thoughts = self._construct_scratchpad(intermediate_steps)
|
|
new_inputs = {"agent_scratchpad": thoughts, "stop": self._stop}
|
|
full_inputs = {**kwargs, **new_inputs}
|
|
return full_inputs
|
|
|
|
@property
|
|
def finish_tool_name(self) -> str:
|
|
"""Name of the tool to use to finish the chain."""
|
|
return "Final Answer"
|
|
|
|
@property
|
|
def input_keys(self) -> List[str]:
|
|
"""Return the input keys.
|
|
|
|
:meta private:
|
|
"""
|
|
return list(set(self.llm_chain.input_keys) - {"agent_scratchpad"})
|
|
|
|
@root_validator()
|
|
def validate_prompt(cls, values: Dict) -> Dict:
|
|
"""Validate that prompt matches format."""
|
|
prompt = values["llm_chain"].prompt
|
|
if "agent_scratchpad" not in prompt.input_variables:
|
|
logger.warning(
|
|
"`agent_scratchpad` should be a variable in prompt.input_variables."
|
|
" Did not find it, so adding it at the end."
|
|
)
|
|
prompt.input_variables.append("agent_scratchpad")
|
|
if isinstance(prompt, PromptTemplate):
|
|
prompt.template += "\n{agent_scratchpad}"
|
|
elif isinstance(prompt, FewShotPromptTemplate):
|
|
prompt.suffix += "\n{agent_scratchpad}"
|
|
else:
|
|
raise ValueError(f"Got unexpected prompt type {type(prompt)}")
|
|
return values
|
|
|
|
@property
|
|
@abstractmethod
|
|
def observation_prefix(self) -> str:
|
|
"""Prefix to append the observation with."""
|
|
|
|
@property
|
|
@abstractmethod
|
|
def llm_prefix(self) -> str:
|
|
"""Prefix to append the LLM call with."""
|
|
|
|
@classmethod
|
|
@abstractmethod
|
|
def create_prompt(cls, tools: Sequence[BaseTool]) -> BasePromptTemplate:
|
|
"""Create a prompt for this class."""
|
|
|
|
@classmethod
|
|
def _validate_tools(cls, tools: Sequence[BaseTool]) -> None:
|
|
"""Validate that appropriate tools are passed in."""
|
|
pass
|
|
|
|
@classmethod
|
|
def from_llm_and_tools(
|
|
cls,
|
|
llm: BaseLanguageModel,
|
|
tools: Sequence[BaseTool],
|
|
callback_manager: Optional[BaseCallbackManager] = None,
|
|
**kwargs: Any,
|
|
) -> Agent:
|
|
"""Construct an agent from an LLM and tools."""
|
|
cls._validate_tools(tools)
|
|
llm_chain = LLMChain(
|
|
llm=llm,
|
|
prompt=cls.create_prompt(tools),
|
|
callback_manager=callback_manager,
|
|
)
|
|
tool_names = [tool.name for tool in tools]
|
|
return cls(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
|
|
|
|
def return_stopped_response(
|
|
self,
|
|
early_stopping_method: str,
|
|
intermediate_steps: List[Tuple[AgentAction, str]],
|
|
**kwargs: Any,
|
|
) -> AgentFinish:
|
|
"""Return response when agent has been stopped due to max iterations."""
|
|
if early_stopping_method == "force":
|
|
# `force` just returns a constant string
|
|
return AgentFinish({"output": "Agent stopped due to max iterations."}, "")
|
|
elif early_stopping_method == "generate":
|
|
# Generate does one final forward pass
|
|
thoughts = ""
|
|
for action, observation in intermediate_steps:
|
|
thoughts += action.log
|
|
thoughts += (
|
|
f"\n{self.observation_prefix}{observation}\n{self.llm_prefix}"
|
|
)
|
|
# Adding to the previous steps, we now tell the LLM to make a final pred
|
|
thoughts += (
|
|
"\n\nI now need to return a final answer based on the previous steps:"
|
|
)
|
|
new_inputs = {"agent_scratchpad": thoughts, "stop": self._stop}
|
|
full_inputs = {**kwargs, **new_inputs}
|
|
full_output = self.llm_chain.predict(**full_inputs)
|
|
# We try to extract a final answer
|
|
parsed_output = self._extract_tool_and_input(full_output)
|
|
if parsed_output is None:
|
|
# If we cannot extract, we just return the full output
|
|
return AgentFinish({"output": full_output}, full_output)
|
|
tool, tool_input = parsed_output
|
|
if tool == self.finish_tool_name:
|
|
# If we can extract, we send the correct stuff
|
|
return AgentFinish({"output": tool_input}, full_output)
|
|
else:
|
|
# If we can extract, but the tool is not the final tool,
|
|
# we just return the full output
|
|
return AgentFinish({"output": full_output}, full_output)
|
|
else:
|
|
raise ValueError(
|
|
"early_stopping_method should be one of `force` or `generate`, "
|
|
f"got {early_stopping_method}"
|
|
)
|
|
|
|
def tool_run_logging_kwargs(self) -> Dict:
|
|
return {
|
|
"llm_prefix": self.llm_prefix,
|
|
"observation_prefix": self.observation_prefix,
|
|
}
|
|
|
|
|
|
class AgentExecutor(Chain):
|
|
"""Consists of an agent using tools."""
|
|
|
|
agent: Union[BaseSingleActionAgent, BaseMultiActionAgent]
|
|
tools: Sequence[BaseTool]
|
|
return_intermediate_steps: bool = False
|
|
max_iterations: Optional[int] = 15
|
|
early_stopping_method: str = "force"
|
|
|
|
@classmethod
|
|
def from_agent_and_tools(
|
|
cls,
|
|
agent: Union[BaseSingleActionAgent, BaseMultiActionAgent],
|
|
tools: Sequence[BaseTool],
|
|
callback_manager: Optional[BaseCallbackManager] = None,
|
|
**kwargs: Any,
|
|
) -> AgentExecutor:
|
|
"""Create from agent and tools."""
|
|
return cls(
|
|
agent=agent, tools=tools, callback_manager=callback_manager, **kwargs
|
|
)
|
|
|
|
@root_validator()
|
|
def validate_tools(cls, values: Dict) -> Dict:
|
|
"""Validate that tools are compatible with agent."""
|
|
agent = values["agent"]
|
|
tools = values["tools"]
|
|
allowed_tools = agent.get_allowed_tools()
|
|
if allowed_tools is not None:
|
|
if set(allowed_tools) != set([tool.name for tool in tools]):
|
|
raise ValueError(
|
|
f"Allowed tools ({allowed_tools}) different than "
|
|
f"provided tools ({[tool.name for tool in tools]})"
|
|
)
|
|
return values
|
|
|
|
@root_validator()
|
|
def validate_return_direct_tool(cls, values: Dict) -> Dict:
|
|
"""Validate that tools are compatible with agent."""
|
|
agent = values["agent"]
|
|
tools = values["tools"]
|
|
if isinstance(agent, BaseMultiActionAgent):
|
|
for tool in tools:
|
|
if tool.return_direct:
|
|
raise ValueError(
|
|
"Tools that have `return_direct=True` are not allowed "
|
|
"in multi-action agents"
|
|
)
|
|
return values
|
|
|
|
def save(self, file_path: Union[Path, str]) -> None:
|
|
"""Raise error - saving not supported for Agent Executors."""
|
|
raise ValueError(
|
|
"Saving not supported for agent executors. "
|
|
"If you are trying to save the agent, please use the "
|
|
"`.save_agent(...)`"
|
|
)
|
|
|
|
def save_agent(self, file_path: Union[Path, str]) -> None:
|
|
"""Save the underlying agent."""
|
|
return self.agent.save(file_path)
|
|
|
|
@property
|
|
def input_keys(self) -> List[str]:
|
|
"""Return the input keys.
|
|
|
|
:meta private:
|
|
"""
|
|
return self.agent.input_keys
|
|
|
|
@property
|
|
def output_keys(self) -> List[str]:
|
|
"""Return the singular output key.
|
|
|
|
:meta private:
|
|
"""
|
|
if self.return_intermediate_steps:
|
|
return self.agent.return_values + ["intermediate_steps"]
|
|
else:
|
|
return self.agent.return_values
|
|
|
|
def lookup_tool(self, name: str) -> BaseTool:
|
|
"""Lookup tool by name."""
|
|
return {tool.name: tool for tool in self.tools}[name]
|
|
|
|
def _should_continue(self, iterations: int) -> bool:
|
|
if self.max_iterations is None:
|
|
return True
|
|
else:
|
|
return iterations < self.max_iterations
|
|
|
|
def _return(self, output: AgentFinish, intermediate_steps: list) -> Dict[str, Any]:
|
|
self.callback_manager.on_agent_finish(
|
|
output, color="green", verbose=self.verbose
|
|
)
|
|
final_output = output.return_values
|
|
if self.return_intermediate_steps:
|
|
final_output["intermediate_steps"] = intermediate_steps
|
|
return final_output
|
|
|
|
async def _areturn(
|
|
self, output: AgentFinish, intermediate_steps: list
|
|
) -> Dict[str, Any]:
|
|
if self.callback_manager.is_async:
|
|
await self.callback_manager.on_agent_finish(
|
|
output, color="green", verbose=self.verbose
|
|
)
|
|
else:
|
|
self.callback_manager.on_agent_finish(
|
|
output, color="green", verbose=self.verbose
|
|
)
|
|
final_output = output.return_values
|
|
if self.return_intermediate_steps:
|
|
final_output["intermediate_steps"] = intermediate_steps
|
|
return final_output
|
|
|
|
def _take_next_step(
|
|
self,
|
|
name_to_tool_map: Dict[str, BaseTool],
|
|
color_mapping: Dict[str, str],
|
|
inputs: Dict[str, str],
|
|
intermediate_steps: List[Tuple[AgentAction, str]],
|
|
) -> Union[AgentFinish, List[Tuple[AgentAction, str]]]:
|
|
"""Take a single step in the thought-action-observation loop.
|
|
|
|
Override this to take control of how the agent makes and acts on choices.
|
|
"""
|
|
# Call the LLM to see what to do.
|
|
output = self.agent.plan(intermediate_steps, **inputs)
|
|
# If the tool chosen is the finishing tool, then we end and return.
|
|
if isinstance(output, AgentFinish):
|
|
return output
|
|
actions: List[AgentAction]
|
|
if isinstance(output, AgentAction):
|
|
actions = [output]
|
|
else:
|
|
actions = output
|
|
result = []
|
|
for agent_action in actions:
|
|
self.callback_manager.on_agent_action(
|
|
agent_action, verbose=self.verbose, color="green"
|
|
)
|
|
# Otherwise we lookup the tool
|
|
if agent_action.tool in name_to_tool_map:
|
|
tool = name_to_tool_map[agent_action.tool]
|
|
return_direct = tool.return_direct
|
|
color = color_mapping[agent_action.tool]
|
|
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
|
|
if return_direct:
|
|
tool_run_kwargs["llm_prefix"] = ""
|
|
# We then call the tool on the tool input to get an observation
|
|
observation = tool.run(
|
|
agent_action.tool_input,
|
|
verbose=self.verbose,
|
|
color=color,
|
|
**tool_run_kwargs,
|
|
)
|
|
else:
|
|
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
|
|
observation = InvalidTool().run(
|
|
agent_action.tool,
|
|
verbose=self.verbose,
|
|
color=None,
|
|
**tool_run_kwargs,
|
|
)
|
|
result.append((agent_action, observation))
|
|
return result
|
|
|
|
async def _atake_next_step(
|
|
self,
|
|
name_to_tool_map: Dict[str, BaseTool],
|
|
color_mapping: Dict[str, str],
|
|
inputs: Dict[str, str],
|
|
intermediate_steps: List[Tuple[AgentAction, str]],
|
|
) -> Union[AgentFinish, List[Tuple[AgentAction, str]]]:
|
|
"""Take a single step in the thought-action-observation loop.
|
|
|
|
Override this to take control of how the agent makes and acts on choices.
|
|
"""
|
|
# Call the LLM to see what to do.
|
|
output = await self.agent.aplan(intermediate_steps, **inputs)
|
|
# If the tool chosen is the finishing tool, then we end and return.
|
|
if isinstance(output, AgentFinish):
|
|
return output
|
|
actions: List[AgentAction]
|
|
if isinstance(output, AgentAction):
|
|
actions = [output]
|
|
else:
|
|
actions = output
|
|
result = []
|
|
for agent_action in actions:
|
|
if self.callback_manager.is_async:
|
|
await self.callback_manager.on_agent_action(
|
|
agent_action, verbose=self.verbose, color="green"
|
|
)
|
|
else:
|
|
self.callback_manager.on_agent_action(
|
|
agent_action, verbose=self.verbose, color="green"
|
|
)
|
|
# Otherwise we lookup the tool
|
|
if agent_action.tool in name_to_tool_map:
|
|
tool = name_to_tool_map[agent_action.tool]
|
|
return_direct = tool.return_direct
|
|
color = color_mapping[agent_action.tool]
|
|
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
|
|
if return_direct:
|
|
tool_run_kwargs["llm_prefix"] = ""
|
|
# We then call the tool on the tool input to get an observation
|
|
observation = await tool.arun(
|
|
agent_action.tool_input,
|
|
verbose=self.verbose,
|
|
color=color,
|
|
**tool_run_kwargs,
|
|
)
|
|
else:
|
|
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
|
|
observation = await InvalidTool().arun(
|
|
agent_action.tool,
|
|
verbose=self.verbose,
|
|
color=None,
|
|
**tool_run_kwargs,
|
|
)
|
|
result.append((agent_action, observation))
|
|
|
|
return result
|
|
|
|
def _call(self, inputs: Dict[str, str]) -> Dict[str, Any]:
|
|
"""Run text through and get agent response."""
|
|
# Construct a mapping of tool name to tool for easy lookup
|
|
name_to_tool_map = {tool.name: tool for tool in self.tools}
|
|
# We construct a mapping from each tool to a color, used for logging.
|
|
color_mapping = get_color_mapping(
|
|
[tool.name for tool in self.tools], excluded_colors=["green"]
|
|
)
|
|
intermediate_steps: List[Tuple[AgentAction, str]] = []
|
|
# Let's start tracking the iterations the agent has gone through
|
|
iterations = 0
|
|
# We now enter the agent loop (until it returns something).
|
|
while self._should_continue(iterations):
|
|
next_step_output = self._take_next_step(
|
|
name_to_tool_map, color_mapping, inputs, intermediate_steps
|
|
)
|
|
if isinstance(next_step_output, AgentFinish):
|
|
return self._return(next_step_output, intermediate_steps)
|
|
|
|
intermediate_steps.extend(next_step_output)
|
|
if len(next_step_output) == 1:
|
|
next_step_action = next_step_output[0]
|
|
# See if tool should return directly
|
|
tool_return = self._get_tool_return(next_step_action)
|
|
if tool_return is not None:
|
|
return self._return(tool_return, intermediate_steps)
|
|
iterations += 1
|
|
output = self.agent.return_stopped_response(
|
|
self.early_stopping_method, intermediate_steps, **inputs
|
|
)
|
|
return self._return(output, intermediate_steps)
|
|
|
|
async def _acall(self, inputs: Dict[str, str]) -> Dict[str, str]:
|
|
"""Run text through and get agent response."""
|
|
# Construct a mapping of tool name to tool for easy lookup
|
|
name_to_tool_map = {tool.name: tool for tool in self.tools}
|
|
# We construct a mapping from each tool to a color, used for logging.
|
|
color_mapping = get_color_mapping(
|
|
[tool.name for tool in self.tools], excluded_colors=["green"]
|
|
)
|
|
intermediate_steps: List[Tuple[AgentAction, str]] = []
|
|
# Let's start tracking the iterations the agent has gone through
|
|
iterations = 0
|
|
# We now enter the agent loop (until it returns something).
|
|
while self._should_continue(iterations):
|
|
next_step_output = await self._atake_next_step(
|
|
name_to_tool_map, color_mapping, inputs, intermediate_steps
|
|
)
|
|
if isinstance(next_step_output, AgentFinish):
|
|
return await self._areturn(next_step_output, intermediate_steps)
|
|
|
|
intermediate_steps.extend(next_step_output)
|
|
if len(next_step_output) == 1:
|
|
next_step_action = next_step_output[0]
|
|
# See if tool should return directly
|
|
tool_return = self._get_tool_return(next_step_action)
|
|
if tool_return is not None:
|
|
return await self._areturn(tool_return, intermediate_steps)
|
|
|
|
iterations += 1
|
|
output = self.agent.return_stopped_response(
|
|
self.early_stopping_method, intermediate_steps, **inputs
|
|
)
|
|
return await self._areturn(output, intermediate_steps)
|
|
|
|
def _get_tool_return(
|
|
self, next_step_output: Tuple[AgentAction, str]
|
|
) -> Optional[AgentFinish]:
|
|
"""Check if the tool is a returning tool."""
|
|
agent_action, observation = next_step_output
|
|
name_to_tool_map = {tool.name: tool for tool in self.tools}
|
|
# Invalid tools won't be in the map, so we return False.
|
|
if agent_action.tool in name_to_tool_map:
|
|
if name_to_tool_map[agent_action.tool].return_direct:
|
|
return AgentFinish(
|
|
{self.agent.return_values[0]: observation},
|
|
"",
|
|
)
|
|
return None
|