mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-21 23:17:48 +00:00
Removed duplicate BaseModel dependencies in class inheritances. Also, sorted imports by `isort`.
100 lines
3.3 KiB
Python
100 lines
3.3 KiB
Python
"""Base interface for chains combining documents."""
|
|
|
|
from abc import ABC, abstractmethod
|
|
from typing import Any, Dict, List, Optional, Tuple
|
|
|
|
from pydantic import Field
|
|
|
|
from langchain.chains.base import Chain
|
|
from langchain.docstore.document import Document
|
|
from langchain.text_splitter import RecursiveCharacterTextSplitter, TextSplitter
|
|
|
|
|
|
class BaseCombineDocumentsChain(Chain, ABC):
|
|
"""Base interface for chains combining documents."""
|
|
|
|
input_key: str = "input_documents" #: :meta private:
|
|
output_key: str = "output_text" #: :meta private:
|
|
|
|
@property
|
|
def input_keys(self) -> List[str]:
|
|
"""Expect input key.
|
|
|
|
:meta private:
|
|
"""
|
|
return [self.input_key]
|
|
|
|
@property
|
|
def output_keys(self) -> List[str]:
|
|
"""Return output key.
|
|
|
|
:meta private:
|
|
"""
|
|
return [self.output_key]
|
|
|
|
def prompt_length(self, docs: List[Document], **kwargs: Any) -> Optional[int]:
|
|
"""Return the prompt length given the documents passed in.
|
|
|
|
Returns None if the method does not depend on the prompt length.
|
|
"""
|
|
return None
|
|
|
|
@abstractmethod
|
|
def combine_docs(self, docs: List[Document], **kwargs: Any) -> Tuple[str, dict]:
|
|
"""Combine documents into a single string."""
|
|
|
|
@abstractmethod
|
|
async def acombine_docs(
|
|
self, docs: List[Document], **kwargs: Any
|
|
) -> Tuple[str, dict]:
|
|
"""Combine documents into a single string asynchronously."""
|
|
|
|
def _call(self, inputs: Dict[str, Any]) -> Dict[str, str]:
|
|
docs = inputs[self.input_key]
|
|
# Other keys are assumed to be needed for LLM prediction
|
|
other_keys = {k: v for k, v in inputs.items() if k != self.input_key}
|
|
output, extra_return_dict = self.combine_docs(docs, **other_keys)
|
|
extra_return_dict[self.output_key] = output
|
|
return extra_return_dict
|
|
|
|
async def _acall(self, inputs: Dict[str, Any]) -> Dict[str, str]:
|
|
docs = inputs[self.input_key]
|
|
# Other keys are assumed to be needed for LLM prediction
|
|
other_keys = {k: v for k, v in inputs.items() if k != self.input_key}
|
|
output, extra_return_dict = await self.acombine_docs(docs, **other_keys)
|
|
extra_return_dict[self.output_key] = output
|
|
return extra_return_dict
|
|
|
|
|
|
class AnalyzeDocumentChain(Chain):
|
|
"""Chain that splits documents, then analyzes it in pieces."""
|
|
|
|
input_key: str = "input_document" #: :meta private:
|
|
output_key: str = "output_text" #: :meta private:
|
|
text_splitter: TextSplitter = Field(default_factory=RecursiveCharacterTextSplitter)
|
|
combine_docs_chain: BaseCombineDocumentsChain
|
|
|
|
@property
|
|
def input_keys(self) -> List[str]:
|
|
"""Expect input key.
|
|
|
|
:meta private:
|
|
"""
|
|
return [self.input_key]
|
|
|
|
@property
|
|
def output_keys(self) -> List[str]:
|
|
"""Return output key.
|
|
|
|
:meta private:
|
|
"""
|
|
return [self.output_key]
|
|
|
|
def _call(self, inputs: Dict[str, Any]) -> Dict[str, str]:
|
|
document = inputs[self.input_key]
|
|
docs = self.text_splitter.create_documents([document])
|
|
# Other keys are assumed to be needed for LLM prediction
|
|
other_keys = {k: v for k, v in inputs.items() if k != self.input_key}
|
|
other_keys[self.combine_docs_chain.input_key] = docs
|
|
return self.combine_docs_chain(other_keys, return_only_outputs=True)
|