mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-22 15:38:06 +00:00
Removed duplicate BaseModel dependencies in class inheritances. Also, sorted imports by `isort`.
154 lines
5.2 KiB
Python
154 lines
5.2 KiB
Python
"""Chain pipeline where the outputs of one step feed directly into next."""
|
|
from typing import Dict, List
|
|
|
|
from pydantic import Extra, root_validator
|
|
|
|
from langchain.chains.base import Chain
|
|
from langchain.input import get_color_mapping
|
|
|
|
|
|
class SequentialChain(Chain):
|
|
"""Chain where the outputs of one chain feed directly into next."""
|
|
|
|
chains: List[Chain]
|
|
input_variables: List[str]
|
|
output_variables: List[str] #: :meta private:
|
|
return_all: bool = False
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.forbid
|
|
arbitrary_types_allowed = True
|
|
|
|
@property
|
|
def input_keys(self) -> List[str]:
|
|
"""Return expected input keys to the chain.
|
|
|
|
:meta private:
|
|
"""
|
|
return self.input_variables
|
|
|
|
@property
|
|
def output_keys(self) -> List[str]:
|
|
"""Return output key.
|
|
|
|
:meta private:
|
|
"""
|
|
return self.output_variables
|
|
|
|
@root_validator(pre=True)
|
|
def validate_chains(cls, values: Dict) -> Dict:
|
|
"""Validate that the correct inputs exist for all chains."""
|
|
chains = values["chains"]
|
|
input_variables = values["input_variables"]
|
|
memory_keys = list()
|
|
if "memory" in values and values["memory"] is not None:
|
|
"""Validate that prompt input variables are consistent."""
|
|
memory_keys = values["memory"].memory_variables
|
|
if set(input_variables).intersection(set(memory_keys)):
|
|
overlapping_keys = set(input_variables) & set(memory_keys)
|
|
raise ValueError(
|
|
f"The the input key(s) {''.join(overlapping_keys)} are found "
|
|
f"in the Memory keys ({memory_keys}) - please use input and "
|
|
f"memory keys that don't overlap."
|
|
)
|
|
|
|
known_variables = set(input_variables + memory_keys)
|
|
|
|
for chain in chains:
|
|
missing_vars = set(chain.input_keys).difference(known_variables)
|
|
if missing_vars:
|
|
raise ValueError(
|
|
f"Missing required input keys: {missing_vars}, "
|
|
f"only had {known_variables}"
|
|
)
|
|
overlapping_keys = known_variables.intersection(chain.output_keys)
|
|
if overlapping_keys:
|
|
raise ValueError(
|
|
f"Chain returned keys that already exist: {overlapping_keys}"
|
|
)
|
|
|
|
known_variables |= set(chain.output_keys)
|
|
|
|
if "output_variables" not in values:
|
|
if values.get("return_all", False):
|
|
output_keys = known_variables.difference(input_variables)
|
|
else:
|
|
output_keys = chains[-1].output_keys
|
|
values["output_variables"] = output_keys
|
|
else:
|
|
missing_vars = set(values["output_variables"]).difference(known_variables)
|
|
if missing_vars:
|
|
raise ValueError(
|
|
f"Expected output variables that were not found: {missing_vars}."
|
|
)
|
|
|
|
return values
|
|
|
|
def _call(self, inputs: Dict[str, str]) -> Dict[str, str]:
|
|
known_values = inputs.copy()
|
|
for i, chain in enumerate(self.chains):
|
|
outputs = chain(known_values, return_only_outputs=True)
|
|
known_values.update(outputs)
|
|
return {k: known_values[k] for k in self.output_variables}
|
|
|
|
|
|
class SimpleSequentialChain(Chain):
|
|
"""Simple chain where the outputs of one step feed directly into next."""
|
|
|
|
chains: List[Chain]
|
|
strip_outputs: bool = False
|
|
input_key: str = "input" #: :meta private:
|
|
output_key: str = "output" #: :meta private:
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.forbid
|
|
arbitrary_types_allowed = True
|
|
|
|
@property
|
|
def input_keys(self) -> List[str]:
|
|
"""Expect input key.
|
|
|
|
:meta private:
|
|
"""
|
|
return [self.input_key]
|
|
|
|
@property
|
|
def output_keys(self) -> List[str]:
|
|
"""Return output key.
|
|
|
|
:meta private:
|
|
"""
|
|
return [self.output_key]
|
|
|
|
@root_validator()
|
|
def validate_chains(cls, values: Dict) -> Dict:
|
|
"""Validate that chains are all single input/output."""
|
|
for chain in values["chains"]:
|
|
if len(chain.input_keys) != 1:
|
|
raise ValueError(
|
|
"Chains used in SimplePipeline should all have one input, got "
|
|
f"{chain} with {len(chain.input_keys)} inputs."
|
|
)
|
|
if len(chain.output_keys) != 1:
|
|
raise ValueError(
|
|
"Chains used in SimplePipeline should all have one output, got "
|
|
f"{chain} with {len(chain.output_keys)} outputs."
|
|
)
|
|
return values
|
|
|
|
def _call(self, inputs: Dict[str, str]) -> Dict[str, str]:
|
|
_input = inputs[self.input_key]
|
|
color_mapping = get_color_mapping([str(i) for i in range(len(self.chains))])
|
|
for i, chain in enumerate(self.chains):
|
|
_input = chain.run(_input)
|
|
if self.strip_outputs:
|
|
_input = _input.strip()
|
|
self.callback_manager.on_text(
|
|
_input, color=color_mapping[str(i)], end="\n", verbose=self.verbose
|
|
)
|
|
return {self.output_key: _input}
|